New Dark Matter Models and Implications for the ILC

Ann Nelson, University of Washington

‘2009 Linear Collider Workshop of the Americas’
University of New Mexico
Albuquerque
September 29, 2009

Many slides taken from 2 theory/expt workshops:
“Unusual Dark Matter” Eugene Oregon July 6-10
“Dark Forces” SLAC, Sept 24-26
Talk Outline

- Intro: WIMPs
- Quick review of recent anomalies in
 - Indirect detection Dark Matter signals
 - DAMA
- “Unusual” Dark Matter?
- Hidden Sectors and Portals
- possible (still unstudied) ILC signatures
Dark Matter Knowns

- 23% of critical density of Universe
- 84% of non relativistic matter in universe
- gravitationally clumps, necessary for galaxy formation
- DARK (no electromagnetic interactions)
- (nearly) collisionless
- much weaker than weak cross section for direct detection
What is Dark Matter?

• Weakly Interacting Massive Particle?
 • well motivated (SUSY, natural relic abundance)
 • Large, multifaceted Experimental Search Program: Colliders, Direct Detection, Indirect Detection

• Axion?
 • well motivated (Strong CP, misalignment mechanism)
 • small Experimental Search Program-ADMX

• Something else? (not baryons, neutrinos, MACHOS)
WIMP Miracle

- standard WIMP; for $M \sim 100$ GeV, correct abundance for $M/T_{\text{freeze}} \sim 20$ (varies as $\log(M)$)
- $<\sigma v> \sim 3 \times 10^{-26}$ cm3/s gives observed relic abundance for standard WIMP
- typical weak cross section for annihilation!
Indirect Detection?

- Our Dark Galaxy (simulated)
- Very Clumpy, lots of substructure
- Annihilation rate/volume $\sim n_x^2 \sigma v$
- Can we see annihilation products?

UW N-body shop
Indirect Signals of Dark Matter Annihilation

- Photons (Fermi?)
- Neutrinos (particularly from DM captured by Sun)
- Charged Cosmic Rays
- Antiprotons (not!)
- Positrons (yes?)
- Electrons (high energy excess?)
Pamela positron fraction

- Till August 30th about 20000 positrons from 200 MeV up to 200 GeV have been analyzed
- More than 15000 positrons over 1 GeV
- Other one year of data to be analyzed

M. Casolino, INFN & University Roma Tor Vergata

Nature 458, 607-609 (2 April 2009)

July talk at Eugene Unusual Dark Matter conference
high energy excess in $e^+ + e^-$ spectrum?

T. Burnett talk at Eugene Unusual Dark Matter conference
Antiproton ratio measured with Pamela: Comparison with experimental data

- Highest energy up to now
- Coherent with secondary production
- Uncertainties of Galactic Propagation
- Would favour Moskalenko 2002 (except highest energy)

Figure 3 shows the antiproton-to-proton flux ratio measured by the PAMELA experiment compared with theoretical calculations assuming pure secondary production of antiprotons during the propagation of cosmic rays in the galaxy. The PAMELA data are in excellent agreement with recent data from other experiments, as shown in Figure 4.

We have presented the antiproton-to-proton flux ratio over the most extended energy range ever achieved and we have improved the existing statistics at high energies by an order of magnitude. The ratio increases smoothly from about 4×10^{-5} at a kinetic energy of about 1 GeV and levels off at about 1×10^{-4} for energies above 10 GeV. Our results are sufficiently precise to place tight constraints on secondary production calculations and contributions from exotic sources, e.g. dark matter particle annihilations.

PAMELA is continuously taking data and the mission is planned to continue until at least 2016.
Indirect evidence for Dark Matter annihilation seen at Pamela, ATIC, Fermi, Hess, Integral, WMAP?

Beyond vanilla WIMPS: A new ‘sector’? Hundreds of new models proposed!
indirect detection of WIMP annihilation in the galaxy?

• usual annihilation into weak bosons/higgses would give too many anti protons

• Pamela, Atic, Fermi, Hess signals imply 100-1000X larger rate than the $<\sigma v>$ which gives observed relic abundance for standard WIMP

• not dark matter? (maybe nearby pulsar?)

• non thermal dark matter production

• astrophysical boost factor from clumpiness

• **Most popular: Sommerfeld enhancement via “dark force”**
Sommerfeld enhancement
(nonperturbative enhancement of annihilation at low velocity)

Hisano et al., Pospelov & Ritz, Arkani Hamed et al.
requires long range force/light boson (< few GeV)
light boson exchange enhances wave function at origin
Dark Force?

- γ' couples to dark matter charge, $O(1)$ coupling constant
- γ' is lighter than few GeV
- γ' couples to ordinary matter, coupling < 10^{-3}
- Elegant mechanism: kinetic $\gamma' \gamma$ mixing
- Renormalizable, gauge invariant term in Lagrangian $\varepsilon F_{\mu\nu} F'^{\mu\nu}$ gives $\gamma' O(\varepsilon)$ coupling to usual electric charge
Motivation from DAMA

- Looks for nuclear recoils induced by DM scattering.
- Sees an unexplained annual modulation:

<table>
<thead>
<tr>
<th>Time (day)</th>
<th>Residuals (cpd/kg/keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-6 keV</td>
<td></td>
</tr>
</tbody>
</table>

DAMA/NaI (0.29 ton·yr)
(target mass = 87.3 kg)

DAMA/LIBRA (0.53 ton·yr)
(target mass = 232.8 kg)

- Both period and phase match up with DM expectations.

DAMA/LIBRA DIRECT DETECTION

Sees annual modulation, correct phase

David Morrisey talk at Eugene Unusual Dark Matter conference
• Explanations using *ordinary* DM are in conflict with bounds from CDMS and XENON.

• *Inelastic dark matter* (iDM) can resolve this.

 Assumption: DM scatters coherently off nuclei preferentially into a slightly heavier state. [*Tucker-Smith*+*Weiner ’01*]

\[
\begin{align*}
M_{DM1} &\sim 100 \text{ GeV}, \\
M_{DM2} - M_{DM1} &= \delta \sim 100 \text{ keV}
\end{align*}
\]

• The inelastic splitting can be generated by a GeV sector.

David Morrisey talk at *Eugene Unusual Dark Matter* conference
Summary of experimental situation

- PAMELA, Fermi and other cosmic ray expts may have provided first clues to identity of dark matter
- or found high energy charged particles created by a pulsar or other astrophysical source
- if dark matter, must explain large annihilation cross section, lack of antiprotons
- a light mediator particle can explain both
- small splitting in dark matter spectrum can reconcile DAMA, CDMS
- A new sector? (particles with $O(1)$ couplings to each other, weak couplings to us)
Possibilities for new physics

Energy Scale

Coupling to SM

gravity

SUSY, Dark matter

standard model
Expanded landscape of Dark Matter

- long lived light particles
- heavy WIMP
- stable
- dark sector

Energy Scale

- gravity

Coupling to SM

standard model
ILC and dark sector

- We’ve designed LHC, ILC to explore the high energy frontier. What if dark matter is in a weakly coupled sector?
“Portals” into exotic sectors: gauge invariant low dimension operators

Leading low energy visible-hidden couplings:

Scalar: $H^+ H \phi$

\Rightarrow Higgs mixing with hidden light scalars
\Rightarrow Higgs decay to hidden sector

Vector: $B_{\mu \nu} X_{\mu \nu}$

\Rightarrow photon mixing with hidden light vector
\Rightarrow Z decay to hidden sector
“Portals” into exotic sectors: gauge invariant low dimension operators cont

low energy visible-hidden couplings:

Spin $1/2$: $H_l N$

\Rightarrow neutrino mixing with hidden light fermions
\Rightarrow FCNC Dark fermion decay into neutrinos
\Rightarrow CC Dark fermion decay, e.g. $e^+ e^- \nu$, $\mu^+ e^- \nu$, $\mu^+ \pi^- \nu$
Neutral particles may be portals to dark sector

Energy Scale

Coupling to SM

stable heavy WIMP
dark sector
long lived light particles

standard model

gravity

H, Z, V, Y
Usual Z, Higgs production, Unusual decays

- ‘dark Higgs’, other dark particles
- low mass charged particle pairs, displaced vertices

\[\text{Br} \sim O(\epsilon^2) \sim 10^{-8} \]
Dark Photon decay branching ratios:

- Decay form factor has been measured, known as R.

\[
R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons, } s)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-, s)} = \frac{BR(b_\mu \rightarrow \text{hadrons})}{BR(b_\mu \rightarrow \mu^+\mu^- (\text{or } e^+e^-))} \quad (m_b = s)
\]

\[
\sim \frac{BR(b_\mu \rightarrow \pi^+\pi^-)}{BR(b_\mu \rightarrow \mu^+\mu^- (\text{or } e^+e^-))}, \quad \text{for } m_b \leq \text{GeV}
\]

For example: $\pi^+\pi^- : \mu^+\mu^- : e^+e^- \simeq 1 : 1 : 1$ for $m_b \simeq 600$ MeV.

I will focus mainly on leptons here.
But, the hadronic final states can be interesting as well.

Lian Tao Wang talk at SLAC Dark Forces workshop
Life time of dark photon

- Prompt, except for tiny couplings, or very large boost.

Value of ϵ for which $c\tau = 1$ mm

$$c\tau \sim \alpha \epsilon^2 m_{b_\mu}$$

$$= 3 \times 10^{-6} \text{cm} \left(\frac{\text{GeV}}{m_{b_\mu}}\right) \left(\frac{10^{-3}}{\epsilon}\right)$$

$Lian Tao Wang$ talk at SLAC Dark Forces workshop
Decay of dark higgs

\[h_d \rightarrow b_\mu (b_\mu^*) \rightarrow 4\ell \] final state

Can have displaced vertex if \(m_{h_d} < 2m_b \)

For example:

\[\epsilon = 10^{-3}, \ m_{h_d} = 1.2 \text{ GeV}, \ m_{b_\mu} = 1 \text{ GeV} \]
\[c\tau \sim 10(s) \text{ cm} \]

For \(m_{h_d} < m_{b_\mu} \)

Very long lived: \(c\tau \sim 10s \text{ m} - 10^2 \text{ km}. \)
Exotic Portals into exotic sectors

New heavy particle with interactions in both sectors

⇒ SM production of charged, colored particles with new gauge interaction

⇒ Z' decaying into both visible, hidden sectors

Metastable heavy particle with shared quantum number

⇒ SUSY LSP with R parity
Dark Sector Production at High Energy Colliders

Direct Production Indirect Production Indirect Production with Shared Conserved Quantum Number

\[\sigma \sim O(\varepsilon^2) \]
\[Br \sim O(\varepsilon^2) \]
\[\sigma \lor Br \sim O(\varepsilon^0) \]

Which Dark Sector States Populated - Depends on Production Portals

Portal \(\sim \varepsilon \)

Scott Thomas talk at SLAC Dark Forces workshop
SUSY LSP particles may be portals to dark sector.
SUSY with a Hidden Valley

smaller MET, but not by much:
splitting between dark states \simO(MeV), leptons/hadrons from transition are relatively soft (and may be delayed). Have not tried to simulate

9/24/09

Y. Gershtein (Rutgers)
Lepton jets at the ILC?
Summary

• Era of exploration of dark matter is well underway
• Just as for Electroweak symmetry breaking, consider wide variety of models (not just SUSY/UED WIMP!)
• “non minimal hidden sector” models for recent anomalies, with unusual implications for
 • direct detection
 • indirect detection
 • collider production
• a few possible ILC signatures:
 • displaced vertices
 • GigaZ: unusual rare Z decays
 • lepton jets