ALCPG Software Framework
Overview & Updates
Jeremy McCormick, SLAC
SiD Group
ALCPG 2009
Requirements Overview

• Software should be easy to install and straightforward to use.
• Researchers should be able to easily create their own analysis programs.
• Framework should support LCIO data format.
• Grid ready (simulation/reconstruction)
• easily support multiple detector models
 – allow researchers to author their own detectors
• JAS3 plugin
 – AIDA, Wired, Java
Framework Diagram

Software

Pythia (etc.), Stdhep

SLIC, LCDD, Geant4, LCIO

Icsim, GeomConverter, LCIO

Icsim, AIDA, LCIO

Framework

Event Generation

Simulation

Reconstruction

Analysis
SLIC - Overview

- full simulation of physics events in detector geometry
- developed at SLAC
- Geant4 binding
- designed for iterative detector development
- generated ~70 million events for SiD LOI on grid and LSF batch system (FNAL, SLAC, other)
- supports simplified cylindrical geometries as well as more realistic detectors
- easy to use
- fast to load/run
- https://confluence.slac.stanford.edu/display/ilc/SLIC
SLIC - Features

• grid ready
 – can be setup to require no external connections
 – minimal dependencies on dynamic libraries
 – Condor and LSF scripts available

• SimDist build kit
 – GNU autoconf
 – binary distributions available for Linux, OSX, & Cygwin

• autonaming of output files

• LCIO output binding

• event generation input
 – GPS, Stdhep, Particle Gun, LCIO (beta)

• LCDD/GDML compatible

• logging system for easy debugging

• simple and familiar command line interface
SLIC – Command Line Interface

• Most types of batch jobs can be run using only the command line interface.
• direct binding to G4 macro commands
 – creates a command queue
• execute a single macro or series of macros in order
• interactive or batch mode
• job examples
 – batch
 slic -g geom.lcdd -i events.stdhep -x -O -r 1000 -p LCPhys
 – batch with single macro
 slic run.mac
 – interactive
 slic -g mygeom.lcdd -m vis.mac -n
SLIC – New Features

• Optical Physics
 – can be used with any physics list supported by slic

• HEPPDT
 – supports extended SM and SUSY particle set using input data table
 – simple transport (charged will bend in field)
 – simple dEdx to create hits in detector

• VRML writer (alpha version)
 – writes cylindrical geometries ok

• additional segmentors for planar geometries
 – CartesianGridXY, CartesianGridXZ

• geant4 9.2
 – physics lists
Geometry System

GeomConverter

Compact Description

LCDetectors

LCDD

Heprep

Icsim

slic

Wired

http://www.lcsim.org/software/geomconverter/
LCDD - Overview

• XML detector description format
• high level of detail
 – An LCDD file specifies ALL parameters required for full detector simulation.
• extends GDML (Geometry Description Markup Language)
• generated by GeomConverter from compact detector description (XML), which is written by hand
• possible to create from scratch (though tedious)
• loads fast
 – C++ SAX Parser (low memory footprint)
 – no external database connection required
• http://www.lcsim.org/software/lcdd/
LCDD - Features

• regions
 – production cuts
• physics limits
 – track length, step length, etc.
• visualization
 – color, level of detail, wireframe/solid
• sensitive detectors
 – calorimeter, optical calorimeter, tracker
 – segmentation
• IDs
 – 64 bit ID specification
 – volume identifiers (physvolid)
• magnetic fields
 – dipole, solenoid, field map
• utilities
 – information on Geant4 stores
 – GDML load/dump
GDML

• basic geometry description format
• supported by multiple toolkits
 – ROOT
 – Geant4
 – slic
 – GeomConverter (write)
• makes all geometry information explicit
 – no black box code with magic numbers
• flexible
 – also usable for ATLAS Upgrade, test beams, etc.
• includes parameters, shapes, materials, volumes, volume hierarchy
Compact Description - Overview

• high level detector description format
 – sid02 (LOI) = 10 pages of XML

• geometry and detector description parameters
 – variables, detectors, segmentation and readout, fields, visualization
 – materials database

• GeomConverter output bindings
 – LCDD
 – HepRep
 – Java (org.lcsim.geometry, org.lcsim.detector)

• detector geometry drivers
 – cylindrical calorimeters and trackers
 – planar calorimeters and trackers
 – support structures
Compact Description - Example

<detector id="3" name="HADBarrel" type="CylindricalBarrelCalorimeter" readout="HcalBarrHits" vis="HADVis">
 <dimensions inner_r = "141.0*cm" outer_z = "294*cm" />
 <layer repeat="40">
 <slice material="Steel235" thickness="2.0*cm"/>
 <slice material="RPCGasDefault" thickness="0.12*cm" sensitive="yes" region="RPCGasRegion"/>
 </layer>
</detector>

- **Global unique identifier**: `id="3"`
- **Global unique name**: `name="HADBarrel"`
- **Detector type**: `type="CylindricalBarrelCalorimeter"`
- **Readout collection**: `readout="HcalBarrHits"`
- **Visualization settings**: `vis="HADVis"`
- **Dimensions**:
 - Inner radius: 141.0 cm
 - Outer radius: 294 cm
- **Layering**:
 - Layer repeat: 40
 - Absorber: Steel235, thickness: 2.0 cm
 - Sensitive layer: RPCGasDefault, thickness: 0.12 cm, sensitive: yes, region: RPCGasRegion
GeomConverter – Cylindrical Detectors

• used in SiD LOI
• builds series of nested cylinders based on layering in compact description
• not realistic
• very fast to simulate
• being phased out for more realistic models
• many models and variations in detector database
GeomConverter – Planar Trackers

- Si trackers and vertex detectors
- planar modules
- size/layout/material parameters specifiable
- segmented into pixels/strips
 - digitization
 - sisim (Tim Nelson)

- Seed Tracker

- subdetector models
 - SiTrackerBarrel
 - SiTrackerEndcap
 - SiTrackerEndcap2
GeomConverter – Planar Calorimeters

- new calorimeter detector components
 - PolyhedraBarrelCalorimeter
 - PolyhedraEndcapCalorimeter
 - EcalBarrel

- parameters
 - number of sides
 - inner R
 - Z
 - layering

- simplified structure
 - plan to add tolerances for stay clears
 - additional support structures could be added also
LCSim - Overview

• Java reconstruction and analysis framework
• GeomConverter dependency provides compact and detailed detector models.
• AIDA (Abstract Interfaces for Data Analysis)
 – plotting in JAS3
 – clouds, histograms, data point sets, tuplus, etc.
• users
 – SiD Group/LOI, ATLAS Upgrade, test beams, dual readout studies, CLIC, etc.
• http://confluence.slac.stanford.edu/display/ilc/org.lcsim
• https://confluence.slac.stanford.edu/display/ilc/LCSim+Tutorials
LCSim – XML Interface

• input format to lcsim for batch jobs
• creates drivers with input parameters
• automatically accepts single arguments based on setter functions (Java Beans)
 – Java primitive types
 – 1D arrays of primitive types
 – custom XML element
 – global expression evaluation
• easy to add external libraries
 – URL to jar file
• input files
 – remote (ftp, http) or local files
• control arguments
 – number of events, logging, data caching, etc.
• JobControlManager
LCSim – XML Example

```
<inputFiles>
  <file>/path/to/myfile.slcio</file>
</inputFiles>

<execute>
  <driver name="MyDriver"/>
</execute>

<drivers>
  <driver name="MyDriver" type="org.lcsim.ADriver">
    <paramX>1.2</paramX>
    <paramXX>1.2 2.3 3.4</paramXX>
  </driver>
</drivers>
```
Maven

- Java build tool
 - http://maven.apache.org
- used by all lcsim-based projects
- project management
 - project version
 - cvs and repository information
 - versioned dependencies
 - build & test
- repository
 - http://www.lcsim.org/maven2
- IDE support
 - Netbeans
 - Eclipse
Future Plans

• full reconstruction with new geometry components
 – planar calorimeters and trackers
• improve realistic detector models
 – calorimeter stay clears, support structures
 – look at CAD models for guidance
• “standard” Geant4 physics list instead of LCPhys
• VRML writer with realistic geometries
 – currently bug in coordinate system from G4 to VRML
• better support for dual readout calorimetry
• add more features to lcsim xml / JobControlManager for batch runs
• publications - slic, LCDD
• improve the documentation (always!)