DHCAL Construction Status

Lei Xia
Argonne National Laboratory

ALCPG2009, Albuquerque
1 m³ – Physics Prototype

Description

40 layers each ~ 1 x 1 m²
Each layer with 3 RPCs, each 32 x 96 cm²
Readout of 1 x 1 cm² pads with one threshold (1-bit)
~400,000 readout channels
Layers to be inserted into the existing AHCAL structure

Purpose

Validate DHCAL concept
Gain experience running large RPC system
Measure hadronic showers in great detail
Validate hadronic shower models

Status

Started construction in fall 2008
RPC Construction

RPC design

2 – glass RPCs
1 – glass RPCs (developed by Argonne)

Chambers needed

114 + spares

Material

Glass in hand for 300 chambers
Kilometers worth of channels for rim in hand
Kilometers worth of fishing line in hand
~50% of resistive paint in hand

Assembly steps

Spraying of glass plates with resistive paint
Cutting of frame pieces
Assembly of chamber
Gluing of glass plates
Mounting of HV cable

Not yet on critical path
Spraying of the glass sheets

Challenge

Produce a uniform layer with $R_{\parallel} = 1 - 5 \, \text{M}\Omega$
(value only critical for thin plate, large plate can be lower)

Previously used paint (LICRON)

Not useful anymore

New paint (artist paint) identified

Reasonably cheap
Non toxic
2 component mixture
Needs to be sprayed

Time needed

Prepration ~ 25 min
Spraying ~ 10 min/plate
Cleanup ~ 10 min

Can do several plates in one go...
Cutting of frame pieces

Challenge

Need to cut pieces with a precision of 0.2 mm
Need to drill holes with a precision of 0.2 mm

Fixture

Assembled and tested

Time needed

~ 15 minutes/frame
Assembly of Chambers

Jig for gluing glass and frame

Jig designed and built
2nd jig (different design) being built

Time needed

Approximately 4 - 8 hours/chamber
(not counting curing time)

1.5 technicians trained for assembly
Assembly Status

<table>
<thead>
<tr>
<th># of RPCs</th>
<th>Label</th>
<th># of glass plates</th>
<th>Glass thickness [mm]</th>
<th>Size [cm]</th>
<th>Conductive Paint</th>
<th>Status</th>
<th>Tests</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>~15</td>
<td></td>
<td>2</td>
<td>1.1</td>
<td>20 x 20</td>
<td>Old licron</td>
<td>built</td>
<td>2 years</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1.1</td>
<td>20 x 20</td>
<td>Old licron</td>
<td>built</td>
<td>2 years</td>
<td>None</td>
</tr>
<tr>
<td>1+3</td>
<td></td>
<td>2</td>
<td>1.2/1.2</td>
<td>32 x 96</td>
<td>Old licron</td>
<td>built</td>
<td>10+ month</td>
<td>High pad multiplicity ~2.1 (mainly due to lower resistivity)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>1.1</td>
<td>20 x 20</td>
<td>Old licron</td>
<td>built</td>
<td>4 months</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>LR001</td>
<td></td>
<td></td>
<td></td>
<td>White paint (brushed)</td>
<td>built</td>
<td>6+ months</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LR002</td>
<td></td>
<td></td>
<td></td>
<td>Black Paint (brushed)</td>
<td>built</td>
<td>6+months</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LR003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>built</td>
<td>~ 2 months</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LR004</td>
<td>2</td>
<td>0.85/1.10</td>
<td>32 x 96</td>
<td>Black Paint (Sprayed)</td>
<td>built</td>
<td>~ 2 months</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LR005</td>
<td></td>
<td></td>
<td></td>
<td>Built with Jig</td>
<td></td>
<td>1 month</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LR006</td>
<td></td>
<td></td>
<td></td>
<td>Built with Jig</td>
<td></td>
<td></td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>LR007</td>
<td></td>
<td></td>
<td></td>
<td>being built with Jig</td>
<td></td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>
Quality Assurance

Currently

Use old electronics to check out chambers

Future

A) Will measure each chamber with new electronics and VST (for tracking)

B) Will measure cosmic rays with completed cassettes in hanging file structure
First cosmics with new board

Setup

Uses 7 chambers from VST
1 large chamber with 1 board

Data taking

First events on 9/11/2009
First Run of Large FEB (Noise Run)
file #0 16-bite data with timestamp out of range (without DCON errors): 2
file #0 16-bite data with wrong timestamp (in range, without DCON errors): 7
file #0 16-bite data with time matching problem (ambiguity in event building: 0
Events built out of data: 3471 Events with building error: 0
Selected Events: 2252 Events with building error: 0

Layer 8
projected hits from good tracks: 509
found matching clusters: 352
efficiency = 0.6915520628683693
multiplicity = 1.2954545454545454
 68.9(1.26) 67.3(1.38) 75.5(1.28)
 66.7(1.39) 77.6(1.21) 68.8(1.32)
 60.8(1.19) 73.5(1.36) 66.0(1.20)
Cassettes

Purpose

Protect RPCs, cool front-end ASICs, compress RPCs

Design

2 x 2 mm2 copper sheets + cooling tube on top
Will fit into CALICE AHCAL structure

Prototypes

First one built some time ago
2nd prototype to be built shortly (material in hand)

Assembly

Not expected to be labor-intensive
Readout system overview

Data

Power

Data Concentrator

Front End Board with DCAL Chips & Integrated DCON

VME Interface

Data Collectors – Need 10

Timing Module
- Double Width
- 16 Outputs

6U VME Crate

Ext. Trig In

GPS IN

6U VME Crate

Ext. Trig In

GPS IN

Communication Link
- 1 per Front-End Bd

To PC

Square Meter Plane

Chambers – 3 per plane

Data Collectors – Need 10

Timing Module
- Double Width
- 16 Outputs

6U VME Crate

To PC
DCAL III production

- DCALIII fixed a few minor bugs in DCALII
- Status of Production:
 - 11 wafers, 10,300 chips, fabricated, packaged, in-hand
 - Bench tests at Argonne
 - Basic performance is the same
 - Only problem: performance in socket not as good as when soldered onto PCB \(\rightarrow\) OK for most tests
DCAL III testing at Fermilab

- Fermilab Chip-Testing Robot
 - 78 parameters measured per chip
 - Test mode:
 - No cuts applied, Measure parameters
 - Checkout mode
 - Apply cuts, Robot sorts
 - Robots sorts good chips & bad chips into trays
 - ~1 minute per chip, ~400 chips/day

- Results so Far:
 - Checked 800 chips
 - Yield 68% (→ 80%)

- Wafer checkout performed
 - One bad wafer (out of 11, and the one started with!)
 - Other wafers looks great
 - >200 chips/wafer sample size
 - Yield as high as up to 95 – 96%
- Have built & checked out 2 boards.
- Have glued 1 pad board
- Testing in progress
- Cosmic ray tests have begun
Gluing fixture for Pad- and FE-boards
1536 glue dots in less than 3 hours

Fixture

Designed, built and commissioned

Practise

Glued a few 16 x 16 cm² boards

New front-end boards

First board successfully glued
~55 minutes needed/board
Low Voltage System

Need +5 Volts for front-end boards

System

Consists of power supplies and distribution boxes
Fits into one rack

Wiener power supplies

7 units in hand

Distribution boxes

Design finalized: individual switches for each front-end board
Parts for 1 unit ordered
To be assembled first week of October

Cables

To be cut later
Gas and HV systems

Gas mixing system

Provides flow for entire 1 m³
Designed, assembled and tested
RPC performance very similar to pre-mixed gas

Gas distribution system

Re-use system from Vertical Slice Test
Need to add 12 outputs (scheduled for October 10 – 20)

Chamber leak tester

Useful for testing completed RPCs
Will be provided by September 29

HV system

Two full systems available
Control software written
System currently in use
DAQ software

Not on critical path

Implemented into CALICE DAQ framework
New readout architecture and geometry implemented
Readout of mixed system (VST + new boards) debugged
Remaining issue with maximum record size to be sorted out

OFFLINE software

Not on critical path

Working on event builder (Jacob Smith)

Agreement to use standard LCIO – Marlin – LCCD – Mokka chain
Test Beam Plans

Start with standalone DHCAL program (including TCMT!)

Broadband muons for calibration
Positrons 1 – 16 GeV
Pions 1 – 66 GeV
Protons 120 GeV

Followed by data taking with Silicon-Tungsten in front

Time scale still uncertain

Realistic goal of data taking starting in spring 2010
DHCAL Construction Overview

<table>
<thead>
<tr>
<th>Item</th>
<th>Status</th>
<th>Outstanding problems/tasks</th>
<th>Critical path</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPC construction</td>
<td>Several chambers built</td>
<td>Test of full-scale 1-glass chambers (requires final front-end board) Develop production procedure</td>
<td>(November - ?)</td>
</tr>
<tr>
<td>DCAL chips</td>
<td>Being tested</td>
<td>Yield?</td>
<td>Until ~ October 1</td>
</tr>
<tr>
<td>Front-end boards</td>
<td>Final design</td>
<td>1 additional round of prototyping?</td>
<td>~May - November</td>
</tr>
<tr>
<td>Back-end</td>
<td>DCOL being tested</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>TTM being re-designed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas system</td>
<td>Being assembled</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>HV system</td>
<td>Completed</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>DAQ software</td>
<td>Being modified</td>
<td>Record length limitation</td>
<td>No</td>
</tr>
<tr>
<td>OFFLINE software</td>
<td>Being developed</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>