Beam-gas Interactions in the Beam Delivery System

L. KELLER, T. MARUYAMA and T. MARKIEWICZ (Stanford Linear Accelerator Center)

ILC-NOTE-2007-016

http://ilcdoc.linearcollider.org

Conclusions

160 bunches

- At 10 nTorr within the IP region there are 0.02-0.04 hits/bunch (3-6 hits TPC) at an average energy of about 100 GeV/hit originating inside 200 m from the IP. Some of these cause intolerable background in the vertex detector, so to reduce this background to less than 1% per bunch crossing, the pressure specification inside 200 m from the IP is 1 nTorr.
- At 10 nTorr, on the FD protection collimator 13 m from the IP, there are 0.21 charged hits (33 hits TPC) at an average charged energy of about 240 GeV/hit and 0.06 photon hits/bunch (9 hits TPC) at an average photon energy of about 50 GeV/hit originating inside 800 m from the IP. This leads to a conservative pressure specification of 10 nTorr in the BDS from 200 to 800 m.
- From a particle background standpoint, within the IP region between the QD0 quadrupoles, the
 pressure can be greater than 1 nTorr since luminosity backgrounds will be dominant in this
 region.

Update on Conclusion 1

Track those 0.02-0.04 particles/BX in the SiD detector.

- NH = 0: 3158/4246 = 74%
- NH ≤ 15: 742/4246 = 17%
- NH > 15: 346/4246 = 8%

Only 10% of particles would generate significant number of hits.

 \rightarrow 10 nT may be acceptable.

Update on Conclusion 3

What is the beam-gas scattering rate in |Z| < 3.5 m at 1000 nT?

250 GeV e-
$$\longrightarrow$$
 2-cm ϕ 7-m long gas (H₂/CO/CO₂)

- Incoherent electronuclear process: $e \rightarrow \gamma \rightarrow \gamma N$
 - Totally negligible, ~10⁻¹⁰/BX@1000nT
- Coherent electronuclear process (deep inelastic

scattering): $e^- \rightarrow \gamma^* \rightarrow \gamma^* N$

• Replace e- with γ : 1.9×10⁻³/BX@1000nT

G4 simulates this process (GHAD package)

- 3.3×10⁻³/BX@1000nT
- 'Large angle' bremsstrahlung
 - 5.8 e-/BX@1000nT

Luminosity backgrounds (pairs, $\gamma\gamma$ hadrons) are much higher.