L* considerations

R. Tomás, B. Dalena, D. Schulte, A. Seryi

CI-Oxford-SLAC-CLIC meeting, April 2009

Goal of March CLIC meeting

Andrei proposed to move the CLIC QD0 out of the detector (double L*) to ease stabilization.

Decide a strategy concerning the L* in view of the CDR

Comparing design luminosities

lumi per	Andrei's	Optimized	CLIC
crossing	original	(MAPCLASS)	(3.5m)
lumi peak	1.2	1.3	1.8
lumi total	2.7	3.0	5.6

After optimizing Andrei's FFS with our code MAPCLASS:

- Peak luminosity is 28% lower than current lattice.
- 4 strong octupoles and 2 strong decapoles are needed.

	Unit	L*=3.5m	L*=8m		
Gradient	T/m	-575	-211		
Length	m	2.73	4.2		
Aperture (radius)	mm	3.5	8.5		
Outer radius	mm	< 35	< 70		
Peak field	Т	2.0	1.8		
Tolerances					
Field stability	$\frac{\Delta k}{k} [10^{-4}]$	0.05	0.03		
Octupolar error	$[10^{-4}@1mm]$	7	3		

Both cases compatible with permanent magnet tech.

Luminosity versus QD0 gradient error

Tuning CLIC nominal

Prealignment assumed to be $10\mu m$ 80% of the cases reach 80% of the luminosity in 18000 iterations

García

Tuning Andrei's proposal

Catastrophy: 50% of cases reported numerical errors related to very low luminosities

7% of the seeds reach 80% Lumi.

Luminosity versus prealignment

Tomás

Tuning CLIC L*=8m (prealignment 2µm)

80% of the cases reach 80% of the luminosity, equivalent to L*=3.5m with 10 μ m prealignment.

Summary of facts

	L*=3.5m	L*=8.0m
Luminosity	L_0	$0.72L_0$
eta_y	0.07mm	0.1mm
QD0 jitter	0.15nm	0.18nm
QD0 supp.	detector	ground
QD0 tech.	PM	PM
QD0 grad tol.	5×10^{-6}	3×10^{-6}
FFS length	400m	800m
Chromaticity	ξ	2ξ
Prealignment	10µm	$2\mu m$

- During the CLIC meeting in March 2009 it was suggested to keep L*=3.5m as nominal design and 8m as an alternative, for 3TeV and 500GeV.
- Further work on tuning simulations, comparisons and assumptions is anyway required.
- L*=8m could become nominal if it is proved that the QD0 jitter tolerance cannot be reached within the detector. Further research on pre-alignment would then be required.

Support slides

Luminosity versus QD0 octupolar error

ATF2 and ATF2 ultra-low β **studies**

From ATF2 simulations:

case	Max. tuning time	Ratio of success
$\beta_y=0.1$ mm	5.5 days	100%
β_y =0.05mm	8 days	90%
β_y =0.025mm	10 days	80%

Tuning time and failure ratio increase with chromaticity

Chromaticity philosophy

Project	Status	eta_y^*	L *	L^*/eta_y^*	ξ_y
		[mm]	[m]		
FFTB	Measured	0.167	0.4	2400	10000
ATF2	Design	0.1	1.0	10000	19000
ATF2 ultra-low β	Proposed	0.025	1.0	40000	76000
CLIC	Design	0.08	3.5	39000	63000
Andrei's prop.	Proposed	0.1	8.0	80000	120000

ATF2 can, on paper, prove CLIC chromaticity levels but would need important hardware changes to even consider reaching Andrei's chromaticity.