

Kaloyan Krastev

Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, FRANCE

FRONTIER DETECTORS FOR FRONTIER PHYSICS, 24-30 May 2009, La Biodola, Isola d'Elba, Italy 11th Pisa Meeting on Advanced Detectors

CAlorimeter for the **LI**near **C**ollider **E**xperiment

ILC \rightarrow electron-positron collider at 500 *GeV* CME 30% / $\sqrt{E/GeV}$ jet energy resolution

The International Large Detector concept Particle Flow Algorithms

- \rightarrow increase measurement precision (most suitable subdetector)
- \rightarrow require perfect reconstruction of particle trajectories even in calorimeters

CALICE Collaboration \rightarrow R&D into calorimeter systems Calorimetry requirements for ILC detectors:

- Compactness (low cost, narrow showers)
- Fine transverse and longitudinal granularity (high position resolution)
- Hermeticity (whole solid angle)

ECAL

- Barrel modules are identical
- Cracks b/w barrel modules at large angle with respect to the radial direction

The Electromagnetic Calorimeter

Si-W ECAL – A Silicon Tungsten sampling calorimeter

Absorber material: Tungsten

- small Moloière radius 9 mm
- small radiation length X0 = 3.5 mm

24X0 to absorb electrons and photons

Sensitive material: high resistive silicon

- free choice of diode size (granularity)
- compactness and simplicity
- 3000 m² surface for the final detector

Half W incorporated into a supporting alveolar composite structure to reduce the dead area Space left for detection units (slabs) to slid in.

Prototypes:

 The first small physics prototype (current talk)
The next generation representative technological prototype – the EUDET module (see the poster session)

Prototypes are exposed to test beam to study performance

The Physics Prototype

Active Layers

Slab Calibration

Calibration Constants

Beam Test Setup

ECAL prototype rotated at 45° Modules are shifted to ensure

Response to Electrons

Electron selection:

Based on event energy:

$$E_{raw} = \sum_{hits} \alpha_i E_i$$

 α accounts for the absorber thickness in different stacks

Selection:

• Energy window: 125 < Eraw(MIP) / Ebeam(*GeV*) < 375

 Cherenkov detector on: Rejects pion contamination (yellow area)

Energy Correction

Energy Response

Linearity and Energy Resolution

Position Resolution

13

Longitudinal Shower Profile

The longitudinal energy distribution for 20 GeV electrons against the calorimeter depth, t

Shower variables – an important tool for particle id and separation

Conclusions

• A Si-W electromagnetic calorimeter for particle flow is under development by the CALICE collaboration

- A physics prototype was already constructed and tested
- The performance has been studied in terms of stability, linearity and energy resolution
- Current results are well within the International Linear Collider Reference Design Report requirements
- Additional position resolution and shower profile measurements are necessary to verify the particle flow capabilities of the facility, studies are ongoing
- A technological prototype is under construction (see poster session)

15