Effect of using impact parameters on τ direction reconstruction

Cosmin Deaconu

SLAC/Stanford

June 12, 2009

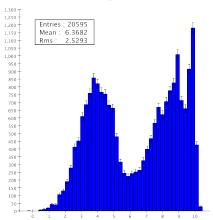
Cosmin Deaconu (SLAC/Stanford)

- (How Much) Does having a good measurement of the impact parameter of the decay products of the τ help improve τ direction reconstruction?
- au direction reconstruction useful for au polarization measurement.
- Tim Barklow's idea to look at this topic.
- Started working on this in January.

- Only had time to analyze $\tau \to h\nu$ decays, where $h \in \{\pi, K\}$ ($\Gamma_i/\Gamma \approx 10\%$.
- Data used was generated with WHIZARD. TAUOLA used to decay $\tau{\rm 's.}$
- Original data had 0 τ decay time. Wrote code to fix .stdhep files. Did it wrong the first time (source of lots of headaches).
- About 30,000 au
 ightarrow h
 u events were analyzed.
- MC information used to detect analyzable events.

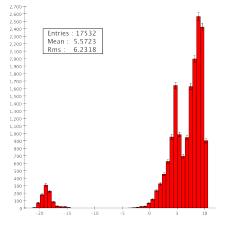
- Maximum likelihood fit. Wrote observable parameters (*h* direction, *h* impact parameters) in terms of τ^- direction, τ arc lengths, *h* decay angles. Minimized χ^2 of the differences with MINUIT.
- Assumptions: Back-to-back τ 's with same energy.
- But no filtering on decay angle. Any detected photons lowered center of mass energy.
- One fit without using the arclength / impact parameters and one with.
- Combination of Simplex / Migrad used in minimization

$$\chi^{2}(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \theta_{h\tau}^{*}, \phi_{h\tau}^{*}, \bar{\theta}_{\bar{h}\tau}^{*}, \bar{\phi}_{\bar{h}\tau}^{*}) = \frac{(p_{h} - p_{h}'(\theta_{h\tau}^{*}))^{2}}{\sigma_{p_{h}}^{2}} + \frac{(\bar{p}_{\bar{h}} - \bar{p}_{\bar{h}}'(\bar{\theta}_{\bar{h}\tau}^{*}))^{2}}{\sigma_{p_{\bar{h}}}^{2}} + \frac{(\theta_{h} - \theta_{h}'(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \theta_{h\tau}^{*}, \phi_{h\tau}^{*}))^{2}}{\sigma_{\theta_{h}}^{2}} + \frac{(\bar{\theta}_{\bar{h}} - \bar{\theta}_{\bar{h}}'(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \bar{\theta}_{\bar{h}\tau}^{*}, \bar{\phi}_{\bar{h}\tau}^{*}))^{2}}{\sigma_{\bar{\theta}_{\bar{h}}}^{2}} + \frac{(\phi_{h} - \phi_{h}'(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \theta_{h\tau}^{*}, \phi_{h\tau}^{*}))^{2}}{\sigma_{\bar{\theta}_{\bar{h}}}^{2}} + \frac{(\bar{\phi}_{\bar{h}} - \bar{\phi}_{\bar{h}}'(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \bar{\theta}_{\bar{h}\tau}^{*}, \bar{\phi}_{\bar{h}\tau}^{*}))^{2}}{\sigma_{\bar{\phi}_{\bar{h}}}^{2}}$$
(1)

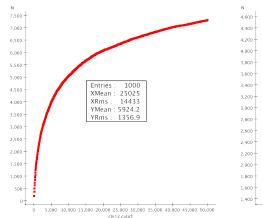

$$\chi^{\prime 2}(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \theta_{h\tau}^{*}, \phi_{h\tau}^{*}, \bar{\theta}_{\bar{h}\tau}^{*}, \bar{\phi}_{\bar{h}\tau}^{*}, s, \bar{s}) = \frac{(\vec{r} - \vec{r}^{\prime}(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \theta_{h\tau}^{*}, \phi_{h\tau}^{*}, s))^{2}}{\vec{\sigma}_{r}^{2}} + \frac{(\vec{r} - \vec{r}^{\prime}(\Theta_{\tau^{-}}, \Phi_{\tau^{-}}, \bar{\theta}_{\bar{h}\tau}^{*}, \bar{\phi}_{\bar{h}\tau}^{*}, \bar{s}))^{2}}{\vec{\sigma}_{\bar{r}}^{2}}$$
(2)

Parameter	Initial Value	Step Size
s, ŝ	Since these are small, the initial value was set to 0.	For reconstruction without the p.c.a., these are fixed. Otherwise, the step size chosen was 0.1 mm.
$\Theta_{ au^-}$, $\Phi_{ au^-}$	The momentum vectors of the two h 's are aver- aged to come up with the initial value for these.	A step size of 0.01 radians was chosen.
$\phi^*_{h u}$, $ar{\phi}^*_{h u}$	The <i>h</i> momenta are rotated boosted from the lab frame to the τ rest frame. $\mathtt{atan2}(p_y^*, p_x^*)$ is then used as the estimate.	A step size of 0.01 radians was chosen.
$ heta_{h u}^*$, $ heta_{h u}^*$	After coming up with estimates for the other fit variables, the range 0 to π is scanned in increments of $\pi/100$ for each of these. The value that minimizes χ^2 (given the initial values for the other parameters) is chosen as the the initial value.	A step size of 0.05 radians was chosen.

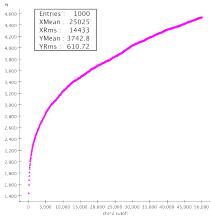
- Used separate project / version control for numbering (same namespace though)
- Clone of mercurial repository at http://bitbucket.org/cozzyd/cosmintaupol/
- Will soon merge back into lcsim-contrib


- Of the 30,011 events $\tau \rightarrow hh$ events that were generated, 20,595 were logged for VERTEX and 17,532 were logged for NOVERTEX.
- Logging doesn't occur when MINUIT reports an invalid minimum.
- At cutoff of $\chi^2=1550,$ nearly equal numbers of events from both methods.
- At that cutoff, rms for Θ residual improves by 29.9% and Φ residual improves by 21.43%.
- A bunch of plots follow. Note that axis scales usually not the same.

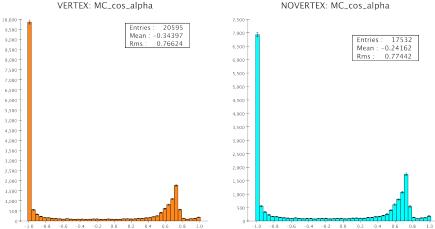
 $\log_{10}(\chi^2)$ plots



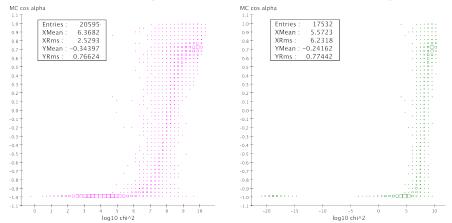
VERTEX: log10 chi^2


NOVERTEX: log10 chi^2

$\log_{10}(\chi^2)$ vs. N plots


VERTEX: N vs. chi^2 cutoff

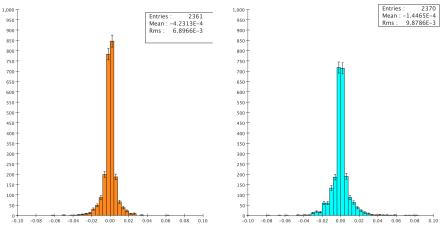
NOVERTEX: N vs. chi^2 cutoff


Cosmin Deaconu (SLAC/Stanford)

 $\cos \alpha$ plots

VERTEX: MC_cos_alpha

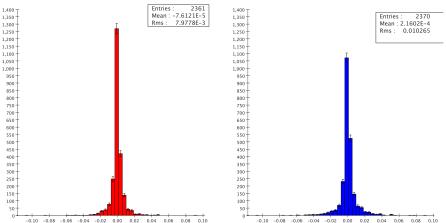
$\log_{10}(\chi^2)$ vs. $\cos \alpha$ plots



VERTEX: MC_cos_alpha vs. log10 chi^2

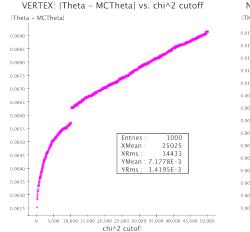
Cosmin Deaconu (SLAC/Stanford)

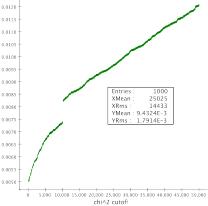
NOVERTEX: MC_cos_alpha vs. log10 chi^2


 Θ residuals at $\chi^2 = 1550$

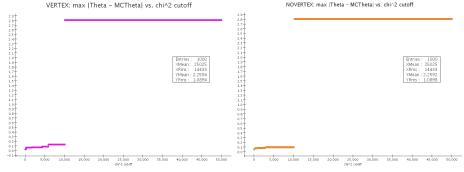
VERTEX: Theta - MCTheta at chi² = 1550

NOVERTEX: Theta - MCTheta at chi^2 =1550

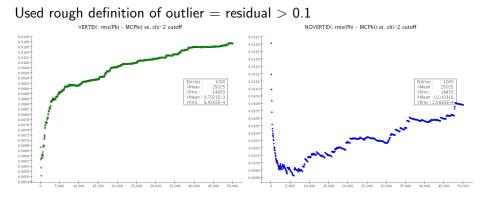

Φ residuals at $\chi^2 = 1550$


VERTEX: Phi - MCPhi at chi^2 = 1550

NOVERTEX: Phi - MCPhi at chi^2 = 1550


Θ residuals (rms) vs. χ^2 cutoff (with discontinuities)

NOVERTEX: |Theta - MCTheta| vs. chi^2 cutoff |Theta - MCTheta|


Doh! It's from outliers.

 Θ residuals (rms) vs. χ^2 cutoff (no outliers)

Used rough definition of outlier = residual > 0.1VERTEX: rms(Theta - MCTheta) vs. chi/2 cutoff NOVERTEX: rms(Theta - MCTheta) vs. chi/2 cutoff 0.0145 0.0140 0.0135-0.0160 0.0155 0.0145 Mean 25025 XMean XRms 14433 YMean : 0.014042 YMean : 0.011426 YRms : 2.0159E-3 YRms: 2.1169E-3 0.0085 0.0080 0.0070 0.0055 0.0090 0.0045 0.008

 Φ residuals (rms) vs. χ^2 cutoff (no outliers)

Cosmin Deaconu (SLAC/Stanford)

- Look at additional decay channels (au
 ightarrow
 ho
 u probably next easiest).
- Could use both τ directions with fit with impact parameter... there exist enough parameters
- Fit Gaussians to residual plots

- I've had a great time here at SLAC. Thanks for having me!
- I'm graduating on Sunday.
- Going to MIT in fall...