Analysis of Micromegas Large Prototype data

D. Attié, P. Colas, M. Dixit, Yun-Ha Shin (Carleton and Saclay)

3rd analysis meeting - June 22, 2009

- Comparison between two resistive modules
- Resolution measurements
- Distortions
- Momentum resolution

- Three panels were successively mounted and tested in the Large Prototype and 1T magnet:
 - standard anode
 - resistive anode (carbon loaded kapton) with a resistivity ~ 2.8 MQ/ $_{\rm D}$
 - resistive ink (~1-2 M Ω / $_{\odot}$) ready for next beam tests

0 D

Standard bulk Micromegas module

November 2008

May-June 2009

·LOTPC

- Bulk Micromegas detector: 1726 (24x72) pads of \sim 3x7 mm²
- AFTER-based electronics (72 channels/chip):
 - low-noise (700 e-) pre-amplifier-shaper
 - 100 ns to 2 μs tunable peaking time
 - full wave sampling by SCA

- frequency tunable from 1 to 100 MHz (most data at 25 MHz)
- 12 bit ADC (rms pedestals 4 to 6 channels)
- Beam data (5 GeV electrons) were taken at several z values by sliding the TPC in the magnet. Beam size was 4 mm rms.

- cosmic run at 25 MHz of sampling frequency \rightarrow time bin = 40 ns
- TPC length = 56.85 cm in agreement with survey

Pad signals: beam data sample

June 22, 2009

Two-track separation

June 22, 2009

P. Colas - Analysis meeting

Determination of the Pad Response Function

- Fraction of the row charge on a pad vs x_{pad} - x_{track} (normalized to central pad charge)
- →Clearly shows charge spreading over 2-3 pads (data with 500 ns shaping)

• Then fit x(cluster) using this shape with a χ^2 fit, and fit simultaneously all lines

œ

Residuals (z=25 cm)

Residual bias (z=25 cm)

- Variation of up to 50 μm
- with a periodicity of about 3mm (pad

June 22, 2009

P. Colas - Analysis meeting

- <u>Resolution</u> at z=0: σ_0 = 54.8±1.6 µm with 2.7-3.2 mm pads (w_{pad} /55)
- Effective number of electrons: N_{eff} = 31.8±1.4 consistent with expectations

œ

- two laser devices installed on the endplate to light up photosensitive pattern on the cathode (spots and line)
- deterioration of resolution at z > 40 cm : due to low field 0.9 to 0.7 T in the last 20 cm (significant increase of transverse diffusion)

P. Colas - Analysis meeting

B field map of the magnet

Resistive Kapton

Resistive Ink

Detector	Dielectric layer	Resistive layer	Resistivity (MΩ/□)
Resistive Kapton	Epoxy-glass 75 µm	C-loaded Kapton 25 µm	~4-8
Resistive Ink	Epoxy-glass 75 µm	Ink (3 layers) ~50 μm	~1-2

Resistive Kapton

- RUN 310
- v_{drift} = 230 cm/µs
- V_{mesh} = 380 V
- Peaking time: 500 ns
- Frequency Sampling: 25 MHz

Resistive Ink

- RUN 549
- V_{drift} = 230 cm/µs
- V_{mesh} = 360 V
- Peaking time: 500 ns
- Frequency Sampling: 25 MHz

Pad Response Functions, z ~ 5 cm

Resistive Kapton

Resistive Ink

Further tests for Micromegas

- Two Micromegas with resistive anode have been tested within the EUDET facility using 1T magnet to reduce the transverse diffusion
- C-loaded Katpon technology gives better result than resistive ink technology
- First analysis results confirm excellent resolution at small distance with the resistive C-loaded Kapton: **55 \mu m for 3 mm pads**
- The moving table is necessary to fix the inhomogeneous B field at high z
- Plans are to test several resistive layer manufacturing process and RC, then go to 7 modules with integrated electronics.
- Next step is making 2 new detectors, identical except the routing (we have 2 routings) both in CLP but a new, lower resistivity one. Should be close to ideal.

Acknowledgments

• <u>Saclay, France</u>:

- D. A.
- P. Colas
- M. Riallot
- <u>Carleton Univ., Canada</u>:
 - M. Dixit
 - Y.-H. Shin
 - S. Turnbull
 - R. Woods
- DESY/EUDET

