

J.B. Singh Panjab University Chandigarh, India (On Behalf of the India-CMS Collaboration)

DST Linear Collider Meeting Nov 10-11, 2003

Overview of Talk

LHC Programme at CERN
CMS Experiment
CMS Physics Aims
Indian Paticipation in CMS

Hardware
Software
Software
Physics Simulation

Funding Issues

LHC Programme

LHC Programme at CERN

- The next CERN flagship Research Program is Based upon Large Hadron Collider (LHC)
- Year 2007: 7TeV + 7TeV proton-proton(pp) collisions
 Two large pp Experiments : ATLAS, CMS
 Heavy Ion Experiment : ALICE
- > Major PHYSICS aims for pp Experiments:
 - ✓ Investigate mechansim of mass generation in the Universe (Search for HIGGS particle)
 - ✓ SUSY Search
 - ✓ Search for other new particles ,Unknown Physics

Indian Participation in CMS

Five Indian Groups in CMS Panjab University, Chandigarh Delhi University, Delhi BARC, Mumbai TIFR(HECR), Mumbai TIFR(EHEP), Mumbai

40 Scientists and Engineers6-7 Research Students.

Formed India-CMS Collaboration

CMS Detector

The CMS Detector is

- ✓ 22 meter Long, 14 meter dia., 12500 tons
- ✓ Central vertex detector and tracker for charged particle measurements
- ✓ High resolution crystal electromagnetic calorimeter for electron and photon measurement + F/B silicon PreShower Detector
- ✓ Hermetic Hadron Calorimeter
- ✓ 4 Tesla Superconducting Solenoidal magnet
- ✓ 4 Layers of Muon detectors

Detector Design well optimised for the Physics Needs (Discovery of HIGGS, Search for NEW PHYSICS)

Indian Hardware Activities

Hardware responsibility of India-CMS

- > Panjab University +TIFR: 3-groups
 - ▲ Outer Hadron Calorimeter (HO)
 - **HO** improves hermeticity of energy measurement
 - CRUCIAL when looking for NEW PHYSICS e.g. SUPER-SYMMETRIC PARTICLES

> BARC + Delhi University:

- ▲ Silicon Preshower Detector (Si PSD)
- ▲ BARC Also: Electronics for the Si PSD is being developed.
- A This detector enhances discrimination between photons & neutral pions in HIGGS Search

Outer Hadron Calorimeter

Outer Hadron Calorimeter HO-Indian

- ✓ Location: Just inside 1st Muon Layer
- ✓ Material: 450 m² of 1 cm thick Plastic
 - \checkmark Scintillator detector with embedded
 - ✓ wavelength shifting fibre(WLS)
- ✓ Readout: light transmission via clear optical fibers to HPD detector
- ✓ Unit Detector is a Tray ⇒2.51 m long & ~35 cm wide
- ✓ Each TRAY consists of scintillator tiles.

INDIA

DST Linear Collider Meeting, Nov 10-11 '03

HO Coverage

- → HO covers the central rapidity region (|h| < 1.26) occupied by the five Muon Rings. (numbered as -2,-1,0,1,2)
- → For Ring 0, there will be two HO layers (Layer 0 & 1) on either side of the 18 cm thick tail catcher iron at R=3.82 m and 4.07 m
- → For Rings -2,-1,1 & 2, there will be a single HO layer (Layer 1) at R= 4.07 m

Need for HO

- In the central region, HB is not thick enough to contain hadronic shower fully, particularly those fluctuated showers which develop deep inside the HCAL.
- Need to extend HCAL outside the solenoid magnet and make additional sampling of the shower.
- This part outside the magnet coil is referred as Outer Hadron Calorimeter (HO)

Simulation Study-HO

Simulation Study-HO

1996 Test beam results

J.B. Singh

Design Consideration

 ✓ Basic Detector Elements should map the barrel hadron Calorimeter (HB) towers of granularity 0.087 X 0.087 in h and f.

✓ Should be able to see MIPS.

✓ 10 mm thick Bicron BC408 scintillator to be used as the active element.

✓ Use 0.94 mm dia WLS Kuraray double clad fibers (in **s** shapped grooves), spliced to clear fibers to carry light to HPDs located on the outer edge of the muon system.

HO Tile design

- Light from individual tile is collected using WLS fiber.
- Fibers are held inside the tile in keyhole type grooves
- There will be 4 identical s shaped grooves per tile.
- HO has 95 different tile dimensions, 75 for layer 1 and 20 for layer 0.

HO Tray Assembly

- ⇒ Tiles in a tray are covered with tyvek and tedler.
- ⇒ Tiles are sandwiched between two plastic plates of 2mm and 1mm thickness for mechanical stability and ease of handling.
- ⇒ 2mm thick plastic cover have grooves to route the fibers from tiles to edge connector.
- ⇒ Additional groove for the source tube

HO Tray Design

- All the tiles in the same f slice of a ring will be packed as a single mechanical unit called the "tray".
- It will cover the entire length of a muon ring along Z.
- Along F, it will only be one tile wide (5⁰)

Light collection

 Clear fibers spliced to WLS fiber will transport scintillation light to an optical connector located at the edge of the tray.

DST Linear Collider Meeting, Nov 10-11 '03

J.B. Singh

Test Beam Results

Pedestal subtracted muon ADC signal from a ring 0 HO tower-(layer 0 and layer 1 combined)
 Signal = 34.7, s_p= 9.4, S/N = 4

Pedestal subtracted muon ADC signal from a ring 1 tile (Single layer).

Signal = 18, s_p =10, S/N = 1.8

Source Calibration

List of HO items

: 2736

- ▲ Number of Tiles
- ▲ Number of Trays : 432
- ▲ Number of Pigtails : 864
- ▲ Number of optical cables : 864
- ▲ Area of scintillators
- **→** WLS fiber length
- ▲ Clear fiber length

- : 380 Sq. mt.
- : 12 Km
- : 90 Km

HO Milestones

Milestones

1999:Pre-Production prototypes sent to CERN & Beam-tested
2000:Engineering & Design Review Approved & Beam Tested
2002:Full Fabrication of Detectors started
2003:PRODUCTION COMPLETED & Already AT CERN

All Trays tested with Radio-active and Cosmic Rays Again Retested Radioactive Source at CERN Final Installation inside CMS detector: March-April,2004

Si-PSD in CMS

CMS PreShower Detector

Silicon Preshower Detector (Si-PSD)Total CMS Si-PSD Detector(Endcap)= 4300India to Contribute (BARC+DELHI)= 1000

CEERI(Pillani) + BEL(Banglore) R&D within India-CMS framework. 1st time Production of such Detectors in India. BARC closely collaborating with CERN on DDU(Detector Dependent Units) Electronics for Si-PSD.

Si-Preshower Detector

<u>Wafer</u>	<u>Geometry/Design</u>	<u>Electrical</u>
<u>4'' Float-zone Si</u>	Length:63±2.0mm	Full depletion Voltage
<u>N-type, <111></u>	Width:60_0.1mm	$55 < V_{fd} x(0.32/t)^2 150V$
<u>t=320±20μm</u>	<u>No. of strips = 32</u>	Breakdown Voltage
Single-side polished	<u>Strip-pitch = 1.90mm</u>	<u>Cat.1:V_{br}>300V</u>
<u>r~4.0±0.5 kW-cm</u>	<u>p⁺ strip-width = 1.8mm</u>	$\underline{\text{Cat.2:V}_{b} > 500V}$
	p ⁺ strip length = 60.82mm	Leakage current
	<u>Al strip-width=1.8mm</u>	<u>Total:<5µA at V_{FD}</u>
	(MO=10µm on both sides)	<u><10µA at 300V</u>
	<u>n+layer thick>2.5µm</u>	<u>Strip-by-strip</u>
		Max.1 with I>1µA V _{FD}
		<u>Max.1 with I>5µA at 300V</u>

Pre-Shower Disc

Total 124 x 4 = 496 Mother boards

CEERI PILANI & BEL BANGALORE TECHNOLOGY AND FABRICATION PARTNERS

KEY SPECIFICATION 32 STRIPS > 300V BREAK DOWN VOLTAGE < 10-20 nA LEAKAGE CURRENT RAD HARD 63mm x 63mm PROTOTYPING DONE PRODUCTION STARTED TO SUPPLY 1000 DETECTORS TO CERN

http://cmsdoc.cern.ch/cms/ECAL/preshower

SILICON STRIP FROM CEERI

PILANI

SILICON STRIP FROM BEL

J.B. Singh

Detector Testing at BEL

Visual inspections	Microscope
Mechanical measurements	
-width & length	Jig
thickness	Comparator
Electrical Meas. For each strip	Both at DU and BARC Systems
I-V & C-V	(based on Lab VIEW)
Noise Meas.	Through I-V Measurement
Electrical calculation	
?Depletion Voltage for strip,	Lab VIEW based analysis
?Breakdown Voltage for strip	Software provided by CERN
?Full Depletion Volt of sensor	
?Breakdown voltage of the sensor	
?Current at V_{fd} and 300V	

Typical IV and CV Characteristics of a Silicon Sensor Fabricated at BEL

Preshower Readout Architecture

DDU Functional Requirements

- > Optical to electrical conversion & de-serialization of incoming data streams
- Integrity verification of incoming data packets/event fragments
- Data reformatting
- Data reduction
- > DDU event formation
- Transmission of DDU events to the global DAQ through the S-Link64 interface
- Transmission of spying events to the local DAQ through VME interface

Data Concentrator Card (DCC)

Si-PSD Milestones

Milestones

>2001: Old size (60 mm x60 mm) detectors: Acceptable yield of Si PSD starting from wafers (>50%) >2002:New (production) size (63mm x63 mm) detectors: Also made successfully. >2002-3:100 Wafers processed in PRE-PRODUCTION run. *****Excellent Detector Performance (Low Leakage Current, High Uniformity) **Production of PSD began in 2003 & 100 Ready** & 1000 to be Completed by 2004/05 **BARC** to Contribute for Design & Development of DDU

& Produce ~ 50 Modules for Si-PSD

Software & Simulations

Software and Simulation

- ? Major contribution to CMS core-software effort:
 ® Design & implementation of Object Oriented Detector Package
 - **® Development of tools for CMSIM & OSCAR**
 - **®**Evaluation/Optimisation of CMS tracker
 - **® Validation of the GEANT4 package (hadronic -shower)**
 - **® Studies of Hadron Calorimeter**
 - **® Using Test Beam Results Fixed Simulation Modules**

DST Linear Collider Meeting, Nov 10-11 '03

J.B. Singh

Geant4 Validation

Energy Measurement

q For a configuration with HCAL alone:

- ${\bf G}$ Convert energy deposits in terms of MIPs using muon data
- G Weigh the energy deposit in each layer by the absorber thickness in front

G Normalise to beam energy using 100 GeV pion data

J.B. Singh

India-CMS Physics Simulation

? Physics Simulation have been done for

- **▲** Search for SM Higgs
- **▲ Invisible Higgs**
- Charged Higgs(in Top Decay)
- **▲ Direct** photon production
- ▲ Study of Top Quark
- **▲** Study of Compositness

About to launch on coordinated & comprehensive physics Simulation programme.

HIGGS Branching Ratio

FUNDING SITUATION

 Funding Issues
 CMS Construction
 Revised Overall CMS Estimate : 513 MCHF (M Swiss Francs) India-CMS Contribution : 4.5 MCHF
 150 MILLION RUPEES
 Detectors = 3.5 MCHF
 Common Project-magnet = 1.0 MCHF
 Maintenance & Operations (2002-07)
 Estimate of Common Collaboration M&O: 19 MCHF
 Based on No. of Scientists (Ph.D.'s): 2.3%

Indian Contribution : 440 kCHF

M&O Contribution towards detectors (H.O. + Si-PSD) = 163 kCHF Total India-CMS M&O (2002-07) : 0.7 MCHF

25 MILLION RUPEES

DST & DAE Funding

Indian Side Budget: **India-CMS funded jointly by** ▲ Department of Science & Technology & **▲** Department of Atomic Energy **220.5 Million Rupees** + Cost of M & O + Per Diem Support for CERN visits For the purpose of **Testing of Detectors Installations Physics Simulations & Software** Meetings, etc.