## The State of Play of Particle Physics

Andreas Kronfeld Interaction Meeting on Linear Collider and Neutrino Physics November 10-12, 2003

Fermi National Accelerator Laboratory

### View of a Spectator



### who sits in the back, not a skybox

Fermi National Accelerator Laboratory

Physical Theory: Superb, Good or Speculative?

Fermi National Accelerator Laboratory

# Emperor's New Mind

- Several years ago, Roger Penrose, an eminent British theorist, wrote a wonderful book called *The Emperor's New Mind*.
  - = Lucid on accepted ideas (quantum mechanics, relativity, quantum field theory).
  - = Speculative about some (of his own) new ideas.
  - = *Honest* about the difference.
- In ENM Penrose classifies physical theories into three categories: *superb*, *good*, & *speculative*.

- Superb means so successful, in breadth & depth, that a newer theory of the same phenomena would subsume it.
- Good means astonishingly accurate and widely applicable, but not quite superb.
- Speculative means more thought or more data needed, before promoting or discarding the idea.
- Some new ideas remain unclassified, ideas that Pauli would have called, "Not even wrong."

### Penrose's Classification

| Superb              | Good               | Speculative   |
|---------------------|--------------------|---------------|
| Classical Mechanics | Epicycles ⇔ orbits |               |
| Special Relativity  |                    |               |
| General Relativity  |                    |               |
| Classical E & M     |                    |               |
| Quantum Mech        |                    |               |
|                     | Standard Model     |               |
|                     | Quantum E&M (QED)  |               |
|                     | Electroweak        |               |
|                     | QCD                |               |
|                     |                    | Higgs boson   |
|                     |                    | String Theory |

Fermi National Accelerator Laboratory

### The Standard Model of Elementary Particle Physics

Fermi National Accelerator Laboratory

### Elements of our SM

- Gauge symmetry:  $SU_c(3) \times SU_T(2) \times U_Y(1)$ dictates how forces couple to matter
- Chiral quarks and leptons (*c*, *T*, *Y*):

 $\bigoplus_{i=1}^{3} \left(3, \frac{1}{2}, \frac{1}{6}\right)$  left-handed quarks  $\bigoplus_{i=1}^{3} \left(3, 0, -\frac{1}{3}\right)$  right-handed down-type quarks  $\bigoplus_{i=1}^{3} \left(3, 0, \frac{2}{3}\right)$  right-handed up-type quarks  $\bigoplus_{i=1}^{3} \left(1, \frac{1}{3}, 0, \frac{2}{3}\right)$  left handed leptons

 $\bigoplus_{i=1}^{3} (1, \frac{1}{2}, -\frac{1}{2})$  left-handed leptons  $\bigoplus_{i=1}^{3} (1, 0, -1)$  right-handed charged leptons

 $T_3 + Y = Q$ 

• These glyphs summarize *laws of Nature!* 

• But we also know that the electroweak part of the gauge symmetry is broken "spontaneously"

$$= SU_T(2) \times U_Y(1) \rightarrow U_{EM}(1) \qquad T_3 + Y = Q$$

= unbroken symmetry would predict  $m_W = m_Z = 0$ 

= But 
$$m_W = 80.423 \text{ GeV}$$
 and  $m_Z = 91.1876 \text{ GeV}$   
( $m_p = 0.93927200 \text{ GeV}$ )

• We have hardly any idea what's responsible!!!

### Standard Model

- The most economical *model* is  $c_1 = c_1 = c$
- But we do not know whether t\_
- We suspect it is not: theoretical and numerical studies strongly suggest that the Higgs model breaks down at some scale Λ (perhaps ~ TeV).

## Quarks & Higgs

- Interactions between quarks and Higgs break symmetry between generations.
- Generate quark masses, but the range is a puzzle (from  $m_u = 0.003$  GeV to  $m_t = 176$  GeV).
- Also generate flavor violation and *CP* Violation via the Cabibbo Kobayashi Maskawa (CKM) Matrix, but still being tested.
- These good features are general enough to survive in (some) extended Higgs models.

### Experimental Status of the Standard Model

Fermi National Accelerator Laboratory

## The Gauge Sector

 Portrait of Giovanni Arnolfini and his Wife

Jan van Eyc

• SU(3)×SU(2)×U(1) gauge symmetry



Copyright @ 2002 National Gallery, London, All rights reserved.





Fermi National Accelerator Laboratory

## The Quark Sector

• Sunlight on the Road to Pontoise

Camille Pissaro

- CKM Matrix V
  - $\equiv$  Flavor Violation
  - $\equiv CP$  Violation



Fermi National Accelerator Laboratory

## Quark Flavor Physics

- Quark interactions and *CP* violation, called "flavor physics" (6 flavors of quark), are under extensive experimental test.
- The aim is to see if the good theory will become superb or will submerge into something grander.
- The standard model has many constraints

 $= V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} = 0$ 

= complex numbers = strength of flavor change

### CKM Matrix 2003



*The* Unitarity Triangle [PDG 2003]

- The constraints can be drawn as triangles in the complex plane
- Semi leptonic decays measure CKM
- Mixing & rare decays test CKM
- CKM passes at 20 accuracy (from QCD)

# The Higgs Sector

• Self portrait in Georgia

*Ivan Albright* (of Warrenville, Illinois)

- $SU(2) \times U_Y(1) \rightarrow U_{em}(1)$
- How? Not a clue!
- Standard: doublet gives  $W_{\rm L}^{\pm}, Z_{\rm L}^{0}$ , and *Higgs boson*



## Standard Higgs?

- LEPEWWG "blue band"
- Assumes Standard Higgs (one doublet)
- Direct exclusion: real Higgs bosons not yet seen
- Indirect effects of virtual Higgs bosons
- Incipient clash?



Andreas Kronfeld

Fermi National Accelerator Laboratory

## But which Higgs?



Higgs Boson musician



Peter Higgs physicist

Fermi National Accelerator Laboratory

## The Lepton Sector

- Neutrino part yet to be painted
- MNS matrix describes lepton mixing
- Leptogenesis? Leading to baryogenesis?



### Neutrino Oscillations

- In the SM, charged leptons

   (e, μ, τ) also acquire mass
   from Higgs, but neutrinos
   should be massless.
- Recent experiments show that neutrinos turn from one flavor into another.
- Which means they have mass: SM is wrong incomplete



### Classification 2003

| Superb                           | Good                 | Speculative       |  |  |
|----------------------------------|----------------------|-------------------|--|--|
| Classical Mechanics              |                      |                   |  |  |
| Special Relativity               |                      |                   |  |  |
| General Relativity               |                      |                   |  |  |
| Classical E & M                  |                      |                   |  |  |
| Standard Model                   |                      |                   |  |  |
| $SU(3) \times SU(2) \times U(1)$ |                      |                   |  |  |
|                                  | Quark Flavor Physics |                   |  |  |
|                                  |                      | Neutrino Masses   |  |  |
|                                  |                      | One Higgs Doublet |  |  |
|                                  |                      | String Theory     |  |  |

Fermi National Accelerator Laboratory

Unanswered Questions

😤 Fermi National Accelerator Laboratory

# Unity and Coherence?

- A nearly ideal (and real) theory: QCD on its own
  - = one symmetry group; few parameters (1 + 6)
  - = theoretically sound at all energies
  - = rich phenomena: quarks give rise to hadrons
- SM as a whole, is homely by comparison
  - = 3 symmetry groups; 19 parameters (+ 7 for neutrinos)
  - = many sectors, bolted together *ad hoc*
  - = some break down at high energies

## Identity?

- What *really* turns  $W^0$  and *B* into *Z* and  $\gamma$ ?
- How do such disparate quark masses arise? Lepton masses?
- Why are the patterns of quark mixing and lepton mixing so different?

## Symmetry?

- Is the Standard Model a relatively unsymmetric limit of a symmetric set of laws?
- Or a relatively symmetric emergent structure from a disoriented morass?
- (Is there a difference?)



Fermi National Accelerator Laboratory

- Answers to questions to these are settled by observed phenomena.
- In this case, those observed at accelerators.
- We tend to emphasize discoveries that transform speculative ideas into good theories.
- Don't forget the developments that render good theories superb laws.

Or reveal good theories to be bad ideas!



- With some improvements in experiment
  - = angles  $\beta$  and  $\gamma$  to 2–3
- With better calculations from (lattice) QCD
  - $\equiv$  lower side to 2
  - $\equiv$  other sides to 5



Fermi National Accelerator Laboratory

## Hunt for the Higgs



- There is a chance that the standard Higgs will be seen at Fermilab.
- If not it is almost certain to be found at the Large Hadron Collider (LHC), scheduled to start in 2007.

### Linear Collider Physics





### • Some examples of the LC precision



#### Andreas Kronfeld

#### Fermi National Accelerator Laboratory

### How is Susy Broken?



#### Andreas Kronfeld

Fermi National Accelerator Laboratory

### Classification 2025?

| Superb                           | Good                | Speculative |  |
|----------------------------------|---------------------|-------------|--|
| Classical Mechanics              |                     |             |  |
| Special Relativity               |                     |             |  |
| General Relativity               |                     |             |  |
| Classical E & M                  |                     |             |  |
| A New Standard Model             |                     |             |  |
| $SU(3) \times SU(2) \times U(1)$ |                     |             |  |
| CKM Matrix                       | A good theory       |             |  |
| <b>MNS</b> Matrix                | of flavor           |             |  |
| Higgs sector + susy              | Susy breaking       |             |  |
|                                  | Stringy black holes | M Theory    |  |

Fermi National Accelerator Laboratory



### **Copyright Bart Aldrich** http://www.pbase.com/image/21458031