Nanobeams,

Proton Drivers, and

Free Electron Lasers

Swapan Chattopadhyay Jefferson Lab, USA

Interaction Meeting on Linear Colliders and Neutrinos Indian National Science Academy November 10, 2003 New Delhi, India

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Dept. Of Energy

Tellerson C

Topics

- Nanobeam Technologies for Linear Colliders
- Technologies for High Current Proton Drivers

and Free Electron Lasers

ellerson C

Nanobeam Technologies for Linear Colliders

- High brightness electron and positron sources
- Fabrication of precision microwave linear accelerator structures on a large scale
- Damping ring components and systems (similar to Synchrotron Radiation Rings)
- Instrumentation for monitoring and control of nanometer size beam collisions
- Control system architecture

Fhomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Tellerson C

LEP

Thomas Jefferson National Accelerator Facility

- •The largest e+e- collider **LEP** at CERN reached about 200 GeV
- •High energy electron on circular orbit looses energy by synchrotron radiation
- •The energy loss in one turn is proportional to

(beam energy)

(radius)

- \rightarrow impossible to build higher energy e+e- ring
- $\bullet \rightarrow$ straight collider

Tefferson L

What is Linear Collider?

• Use 2 linear accelerators

- Throwaway beam
- Repeat
 - —beam generation
 - -acceleration
 - -collision
 - quickly

(efferson C

Luminosity: only few x 10⁴ larger than SLC!

- Increased beam power from long bunch trains
- Larger beam cross-sectional densities: N / ($\sigma_x \sigma_y$)

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

(ellerson C

Accelerator Physics Issues in ILC

• Two issues:

– Energy (rf technology)

- Luminosity (small spot and beam power)

- Small spot sizes:
- Low emittance damping rings
- Final focus system
- Alignment and jitter tolerances
- Beam-based alignment and feedback

- Beam power (long bunch trains):
- Charge from sources
- Long-range wakefields
- Radiation damage

- •Both issues: (very high charge densities)
- Damping ring instabilities
- Beam collimation and machine protection

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson C

History of Beam Size in e⁺e⁻ Colliders

Creating High Quality Beams

- High Brightness Electrons/Positron Source
- Injection into a Damping Ring for "cooling"
- Electrons loose energy by synchrotron radiation in the Damping Ring
- Beam becomes small in this process

Similar to a Synchrotron Radiation Storage Ring (e.g., Indus-II), with 10x better damping.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson (

India 11-10-039

Synchrotron Radiation

Fhomas Jefferson National Accelerator Facility

Put a ball in the groove slightly off the center

It falls down along the groove, oscillating

But the oscillation fades away owing to the friction

Synchrotron radiation works as friction

ellerson C

Get a high quality beam in less than a second

Acceleration of High Quality Beams

- Use Linear Accelerator (Linac)
- Accelerate by Microwave frequency 11.4 GHz wavelength 26 mm

(similar to SLAC with 4x frequency and >10x precision)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Tefferson C

Inner surface accurate to 1 µm Must be aligned straight within 10 µm

Thomas Jefferson National Accelerator Facility

Need efficient large-scale fabrication of high precision accelerator structures.

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

lefferson S

India 11-10-0312

JLab / DESY/Cornell Technology: Test Result

Cavity Name: S33 Cavity Test: 7

Start of test: 06-sep-1999 Test Location: V1

Increased tolerance to precision, but SRF 00 technology, although fully "developed", is still far from maturing – need R&D

Max field reached in individual cells				
Cell-Pair	Emax [MV/m]	Limitation		
1&9	25.80	Quench		
2&8	27.52	Quench		
3&7	26.65	Quench		
4&6	25.53	Quench		
5	28.35	Quench		

Eacc IMV/ml

1.1	100	0000.00	00.01	110 Charlower JWCI
	200	1449.00	35.32	none
	300	770.50	35.72	Quench
1	400	580.80	36.60	Quench
	500	556.60	37.64	Quench
	600	321.20	35.20	Quench
	700	287.10	35.50	Quench
1	800	256.20	35.41	Quench
	900	248.10	35.61	Quench
	1000	231.60	35.58	Quench
	1100	226.10	35.14	Quench
	1200	224.90	34.37	Quench
	1300	205.30	33.67	Quench

-2000

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

efferson C

India 11-10-0313

Guiding the Beam

•Use magnet: Well-known technology since many, many years ago

•But

efferson Ç

- •10 nm vibration can cause miss-collision
- •500 nm shift can make the beam fat

 \rightarrow Computer control of magnet position

•Ground is moving

Integrated Magnet and Control System

Thomas Jefferson National Accelerator Facility

Ground Motion

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

•

۲

India 11-10-0315 **U.S. DEPARTMENT OF ENERGY**

ice

Collide Tiny Beams

Beam size at collision point

- 100 µm long
- 0.3 µm wide
- 0.003 µm (3 nm) thick

(These are RMS values)

How can you keep them colliding ?

Thomas Jefferson National Accelerator Facility

Beam-Beam Simulation

15:00:14(13-MAY-02) CAIN2.32 Head-on. t=-3.040 30 20 10 y(nm) 0 -10 -20-30-40+ -600 -200 200 -400400 600 $s(\mu m)$ Tefferson G Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

India 11-10-0317 U.S. DEPARTMENT OF ENERGY

Office of

cience

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

India 11-10-0318

8 U.S. DEPARTMENT OF ENERGY

Office of

Science

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

India 11-10-0319

Office of

Science

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

India 11-10-0320

Office of

Science

Feedback System to Control nm-scale Collisions

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson C

India 11-10-0321

U.S. DEPARTMENT OF ENERGY

Challenges for All

- Technical
 - Simplify design further
 - Reduce cost
- Socio-economic and Political:
 - Reduce ambition: energy and luminosity
 - If ~\$1B one country can host
 - If ~several B\$ international collaboration with several countries
 - Learn how to collaborate globally

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

ellerson C

Technologies for High Current Proton Drivers and Free Electron Lasers

- Superconducting Radiofrequency Science and Technology
 - Spallation Neutron Source
 - Proposed 8 GeV Linac at FNAL
 - Free Electron Laser at Jefferson Lab
- High Current Guns

ellerson C

• High Power Optics / Laser Particle Beam Interactions

The Spallation Neutron Source Partnership

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

(efferson C

India 11-10-0324

SNS

Background Microphonics Histogram Med B CM Prototype, Cavity #2, CW @ 6MV/m

Vibration Frequency (Hz)

Thomas Jefferson National Accelerator Facility

Background Microphonics, Med B Cryomodule Prototype, Cavity Position 2 @ 1MV/m CW 1.E+01

FNAL 8 GeV Superconducting Linac With X-Ray FEL and 8 GeV Spallation & Neutrino Source

and the second second

Fixed-Target

X-RAY FEL LAB

8 GeV Linac

Main Injector @2 MW

Neutrino

Beams'

8 GeV

~ 700m Active Length

Slow-Pulse Spallation Source & Neutrino Target

Courtesy: Bill Foster, FNAL

Harmonic Generation in Free Electron Lasers -IR Demo FEL at Jefferson Lab

Thomas Jefferson National Accelerator Facility

Second Harmonic Lasing

- 2.925 microns, 0.6 micron detuning width
- 4.5 W average power
- TM01 or higher mode

 $t \approx 300 \, \mathrm{fs}$

• Gain of 1.35% per pass

Submitted to PRL

Jefferson S

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

India 11-10-0328

JLab FEL Harmonic Generation

Thomas Jefferson National Accelerator Facility

Wavelength	Conversion efficiency	CW Power (Watts average)
Fundamental 3.165 μm	1.6% (ebeam:light)	1700*
Lasing 3rd Harmoni 1.055 μm	c 0.7% (ebeam:light)	350*
2x 528 nm	40%	56*
3x 352 nm	9%	12*
4 x 264 nm	8%	17 (pulsed)

*World record for picosecond laser

lefferson G

Thomson Scattering for Femtosecond X-rays

X-rays from IR DEMO at Jefferson Lab

Potential Fields of Research

Femtosecond X-ray probe for:

100

Two Pivotal Technologies for ERL/FEL

Superconducting RF cavities (Q ~ 10¹⁰ @ 20 MV/m)

TTF 9-cell 1.3 GHz cavity (courtesy of DESY)

Laser-driven photoinjector ($\varepsilon_n \sim \mu m @ 100 mA$)

DC photogun at JLAB IR FEL (courtesy of JLAB)

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

(efferson C

Femtosecond Laser System

Pulse energy: 500 mJ Pulse length: >50 fs ⇒ Power ~ 10 TW

India 11-10-0333 U.S. DEPARTMENT OF ENERGY

Thomas Jefferson National Accelerator Facility

Manipulation of Particle Beams for all these applications needs to take full advantage of

THE ELECTROMAGNETIC SPECTRUM

from the microwave to the visible via various technologies: normal conducting and superconducting microwave cavities, short pulse, high power lasers and sophisticated feedback/control systems.

We invite scientists from institutions across India to collaborate globally in advancing the R&D frontier and participate in possible future international facilities.

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

efferson C