Neutrino Experiments at Fermilab

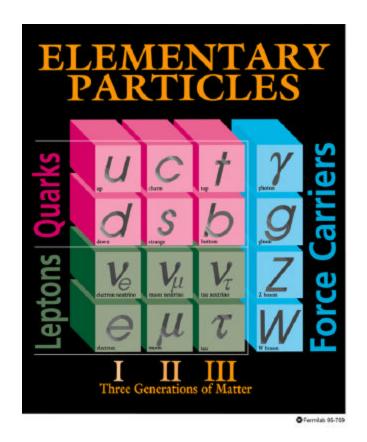
- Physics Motivation
- Fermilab/NuMI neutrino beam(s)
- Experimental Program
 - MINOS
 - Off-axis experiment
 - 'Other' experiments
- Synergy of Neutrino Experiments and Opportunities for Collaborative efforts

11 Greatest Unanswered Questions of Physics

- What is dark matter?
- What is dark energy?
- How were the elements from iron to uranium made?
- Do neutrinos have mass?
- **>** ...
- Are protons unstable?
- What is gravity?
- Are there additional dimensions?
- How did the Universe begin ?

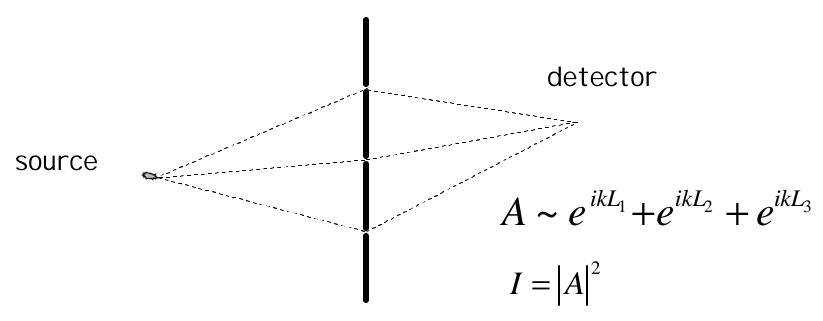
Discover February 2002

Mass Generation: Central Problem in Particle Physics (II)


Version 2 (circa 2000)

- 1. Particles are massless
- Higgs Peter (Pan?) comes and dispenses mass
- Others get from their share (0.05 eV 175 GeV)

Mass generation mechanism = payroll scheme with for workers with salaries ranging from <\$0.00005 to \$175,000,000. Bizarre! Why such a colossal disparity??


Perhaps, if we knew the salary pattern of the lowest paid workers we can get some insight into the underlying rules

→ need to measure masses of the order of 0.01 eV and less

Interferometry: a technique for precise measurement of mass differences

Three slit interference experiment

I(x) – interference pattern is a result of phase differences due to optical path differences (optics) or due to differences of the neutrino components (neutrino oscillations).

Analogous to $K_S^0-K_L^0$ mass difference measurement.

Episode I: Before the "New Era"

Theory:

Neutrino mass differences 1-100 eV²

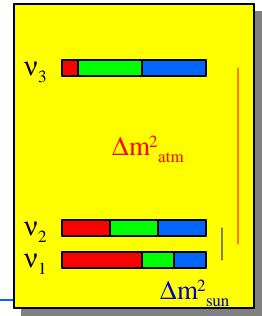
WRONG!!

Neutrino mixing matrix similar to quarks (small or very small mixing angles)

Experiment:

- ➤ No evidence for neutrino oscillations in accelerator (BEBC, CDHS, CHARM, CCFR) or reactor (Bugey, Gosgen) experiments
- Confusing 'solar neutrino problem'

New Era started by "SuperK revolution":

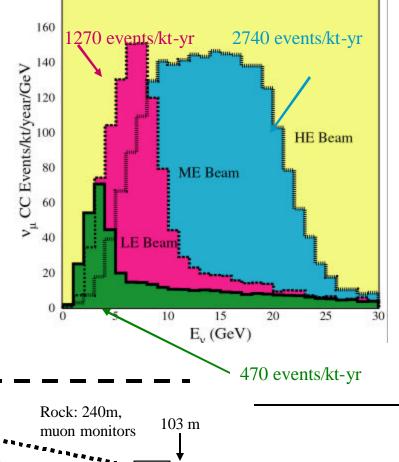

- ➤ Neutrinos have mass, mass differences are very small
- ➤ Neutrino mixing angles are very large

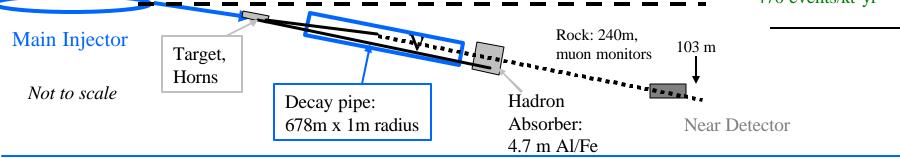
Neutrino Physics after the SuperK Revolution

- Muon neutrinos disappear (SuperK, K2K, Soudan II, Macro)
- Electron neutrinos disappear (Homestake, SAGE, GNO, SuperK, SNO)
- Electron antineutrinos disappear (KamLand)
- Electron neutrinos convert into 'other' types of neutrinos (SNO + SuperK)
- ➤ Neutrinos have non-zero mass (*****)
- >Weak neutrino eigenstates are coherent mixtures of mass eigenstates

$$\begin{bmatrix} \boldsymbol{n}_{e} & \boldsymbol{n}_{m} & \boldsymbol{n}_{t} \end{bmatrix} = \begin{pmatrix} U_{e1}^{*} & U_{e2}^{*} & U_{e3}^{*} \\ U_{m1}^{*} & U_{m2}^{*} & U_{m3}^{*} \\ U_{t1}^{*} & U_{t2}^{*} & U_{t3}^{*} \end{pmatrix} \begin{bmatrix} \boldsymbol{n}_{1} \\ \boldsymbol{n}_{2} \\ \boldsymbol{n}_{3} \end{bmatrix}$$

- ➤ Magnitude of mixing matrix elements defines composition of electron/muon/tau neutrinos
- ➤ Mass differences determine the oscillation length

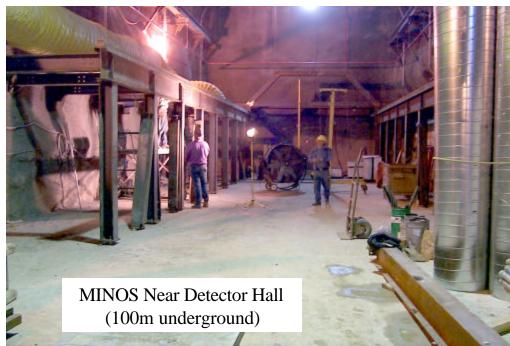

What do we know/want to know better (I)

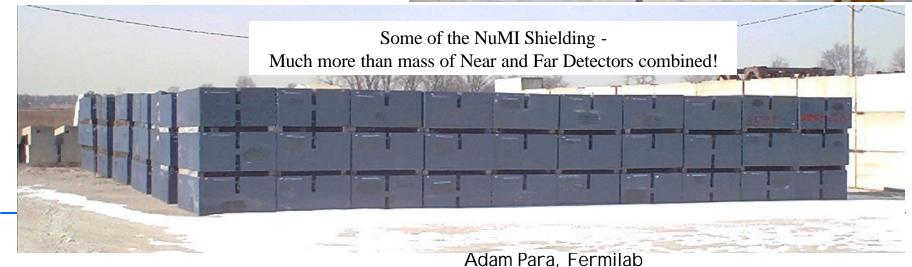

- > There are two mass scales:
 - $\Delta m_{12}^2 \sim 7 \times 10^{-5} \text{ eV}^2$
 - $\Delta m_{23}^2 \sim 1.5 3 \times 10^{-3} \text{ eV}^2$
- Two mixing angles are large:
 - $\theta_{12} \sim 35^{\circ}$
 - $\theta_{23} \sim 90^{\circ} (\sin^2 2\theta_{23} > 0.9)$
- Third mixing angle is not very large $\sin^2 2\theta_{13} < 0.1$
- Physics of neutrino mixing is similar to quark mixing, yet the pattern is completely different

- ➤ Is the disappearance of muon neutrinos indeed due to neutrino oscillations (see the characteristic oscillation pattern)
- Do other possible mechanisms contribute (decays, extra dimensions,..)?
- What is the precise value of Δm_{23}^2 ?
- ➤ Is θ_{23} = 90°? Full mixing →New symmetry?
- \triangleright What is the value of θ_{132}
- Do neutrinos and antineutrinos oscillate the same way? (CPT!)

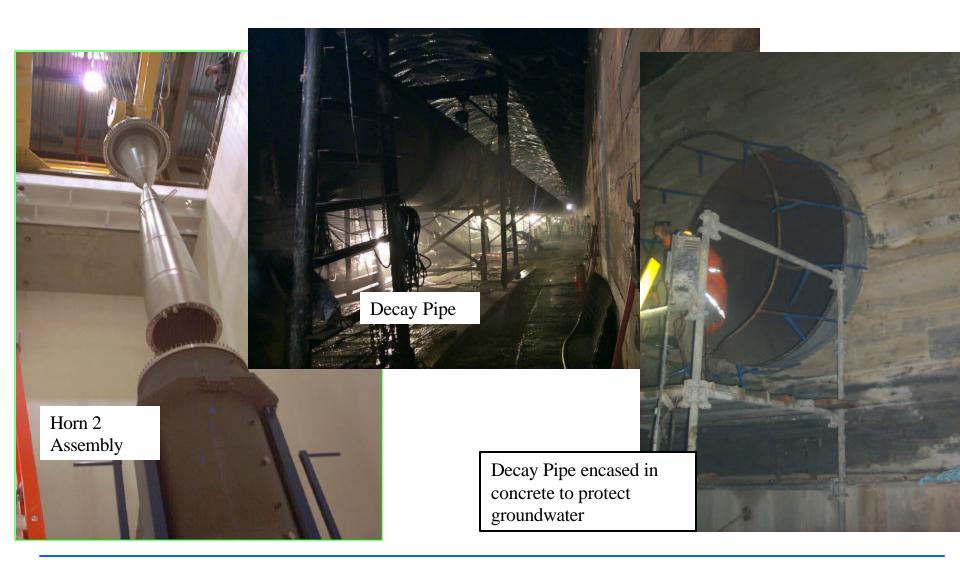
A Tool: NuMI Beam

- 120 GeV Protons from Fermilab Main Injector
- > 10µs pulse, every 1.9s
- Proton Intensity:
 - 4x10¹³ protons/pulse design
 - 2.5x10¹³ p/p expected at startup
- Hadrons focused with 2 horns
 - Flexible: select beam energy spectrum by adjusting horn and target positions



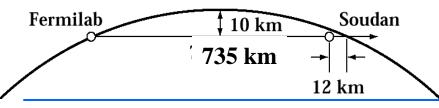


180


NuMI Beam Status

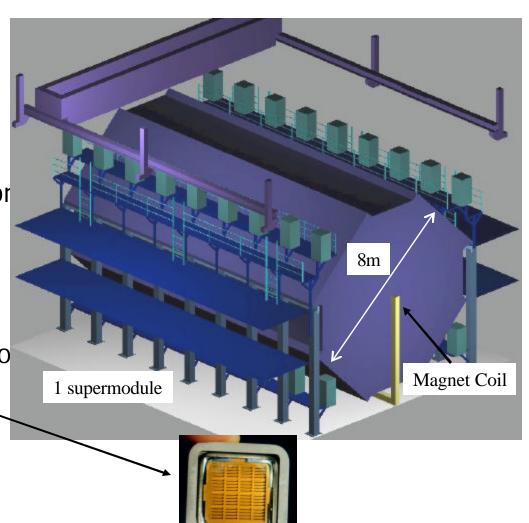
- Excavation of underground complex complete
- Decay Pipe installed
- Tunnel/Hall Outfitting in progress
- Target has been fabricated
- Horns have been assembled
- Project will be complete/ commissioning starts Dec. 2004

NuMI Beam Status



MINOS

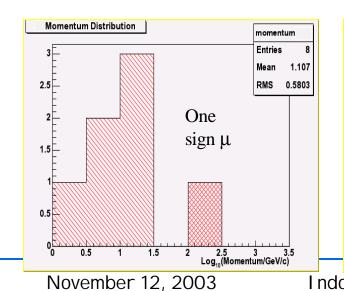
Main Injector Neutrino Oscillation Search

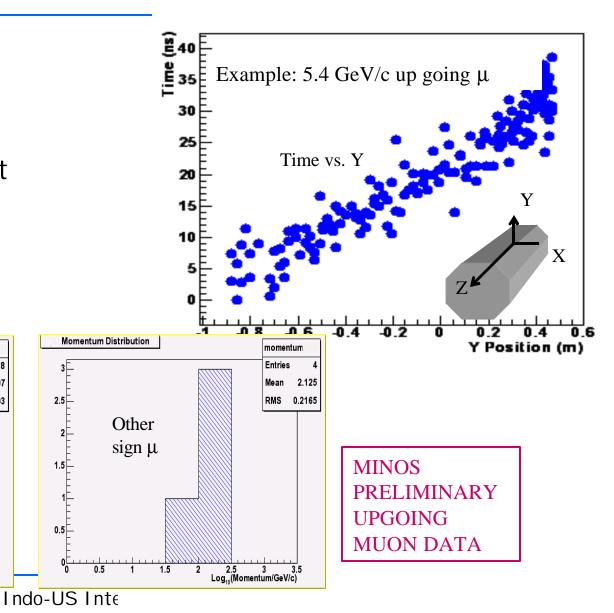

- > Precision Δm_{23}^2 and $\sin^2(2\theta_{23})$ measurement in ν_{μ} disappearance
- 2 detectors, functionally identical, separated by 735km baseline
 - Near Detector: 1kt detector at Fermilab
 - Far Detector: 5.4kt detector at Soudan


Far Detector

➤ 5.4kt total

- 484 planes in two ~14.5m long "super modules"
- Each plane 8m octagon
- 2.54cm Fe, 1cm Scintillator
- ~1.5T Magnetic field
- > Readout
 - 2 ended readout
 - 8x optical multiplexing into M16 multi-anode PMTs
 - ~92k strips, 23k channels
- Overburden
 - 710 m (2090 mwe)

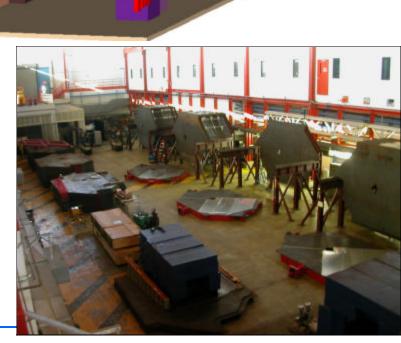

Far Detector Status



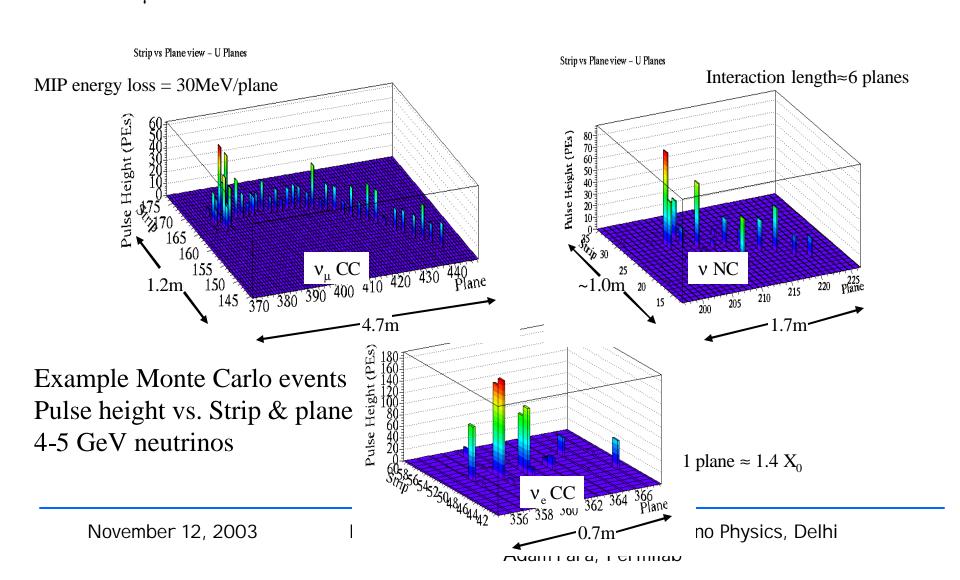
- Far Detector construction completed!
 - 1st supermodule operational since 7/02
- > Veto Shield
 - Build from same scintillator used in detector
 - Help ID Atmospheric neutrino interactions

Far Detector Data

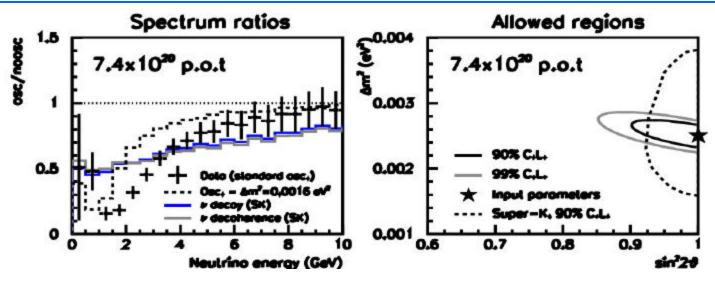
- Up Going Muons: v interactions below detector
 - Use timing to select up going muons
- Magnetic Field
 - Distinguish μ⁻, μ⁺



Near Detector


Same sampling/structure as far detector

- > 980 t
- ➤ High rate (10µs spill)
 - HE beam: 20 interactions/m/spill
 - LE beam: 3.2 interactions/m/spill
 - High speed electronics
 - 4x multiplexing in spectrometer only
- All Planes have been assembled in a surface building

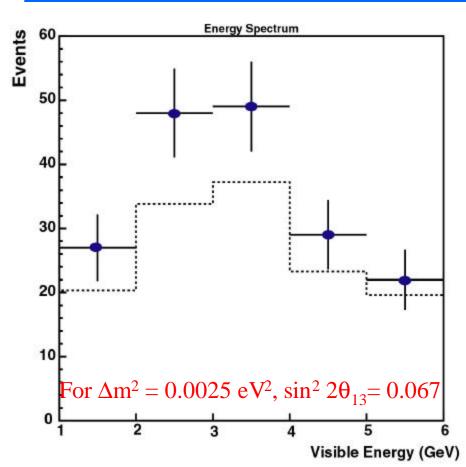


MINOS v Event Topologies

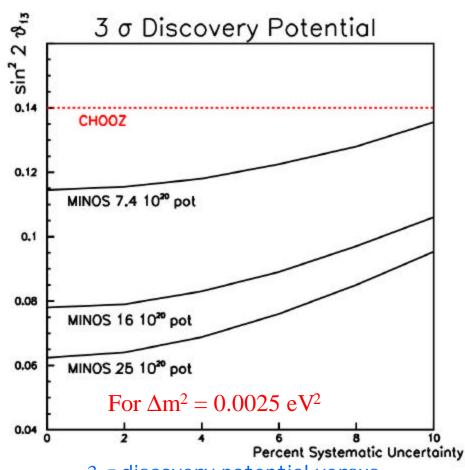
 $\triangleright v_{\mu}$ identified by μ in Charged Current interactions

Oscillation measurements

Comparison of the observed spectrum of ν_μ charged current events with the expected one provides a direct measure of the survival probability as a function of neutrino energy


$$P = 1 - \sin^2 2J_{23} \sin^2 \frac{1.27\Delta m^2 L}{E_n}$$

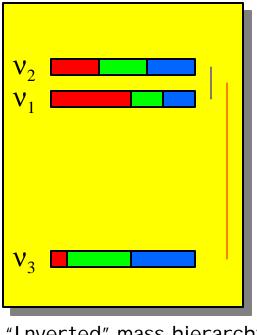
Does the disappearance follow this functional form?


Neutrinos <u>and</u> antineutrinos?

- \triangleright Dip depth ←→ oscillation amplitude (sin²2θ₂₃)
- ightharpoonup Dip position $ightharpoonup \Delta m_{23}^2 (\pi/2 = 1.27 \text{x} \Delta m_{23}^2 \text{xL/E}_{dip})$

Electron Neutrino Appearance

Observed number of ν_e CC candidates with and without oscillations. $25x10^{20}$ protons on target.



 $3\ \sigma$ discovery potential versus systematic uncertainty on the background.

What do we want to know (II)

This?

Or that?

2. Electron component of
$$v_3$$
 (sin²2 θ_{13}) \

"Normal" mass hierarchy

"Inverted" mass hierarchy

$$\begin{bmatrix} \boldsymbol{n}_e & \boldsymbol{n}_m & \boldsymbol{n}_t \end{bmatrix} = \begin{pmatrix} B & B & s \\ B & B & B \\ B & B & B \end{pmatrix} \begin{bmatrix} \boldsymbol{n}_1 \\ \boldsymbol{n}_2 \\ \boldsymbol{n}_3 \end{bmatrix}$$

3. Complex phase of $s(?) \leftarrow \rightarrow$ CP violation in a neutrino sector $\leftarrow \rightarrow$ (?) baryon number of the universe

 Δm^2

The key: $v_{\mu} \Rightarrow v_{e}$ oscillation experiment

$$P(\mathbf{n}_{m} \rightarrow \mathbf{n}_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$$

$$P_1 = \sin^2 q_{23} \sin^2 q_{13} \left(\frac{\Delta_{13}}{B_{\pm}} \right)^2 \sin^2 \frac{B_{\pm} L}{2}$$

$$P_2 = \cos^2 q_{23} \sin^2 q_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \frac{AL}{2}$$

Oscillation at the 'atmospheric' frequency

Oscillation at the 'solar' frequency

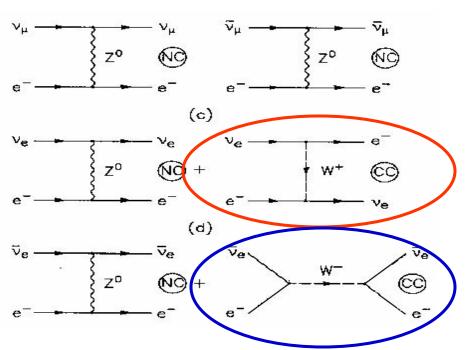
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_n};$$

$$A = \sqrt{2}G_F n_e;$$

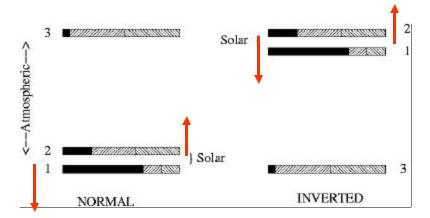
$$B_{\pm} = |A \pm \Delta_{13}|;$$

$$J = \cos \mathbf{q}_{13} \sin 2\mathbf{q}_{12} \sin 2\mathbf{q}_{13} \sin 2\mathbf{q}_{23}$$

$$P_3 = J \cos \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13} L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm} L}{2}$$

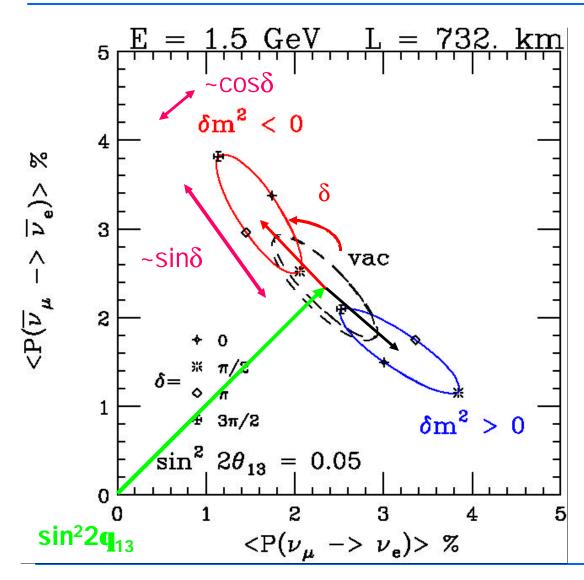

$$P_4 = J \sin \frac{d}{d} \left(\frac{\Delta_{12}}{A} \right) \left(\frac{\Delta_{13}}{B_{\pm}} \right) \sin \frac{\Delta_{13} L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm} L}{2}$$

Interference of these two amplitudes → CP violation


$$P = f(\sin^2 2\mathbf{q}_{13}, \mathbf{d}, \operatorname{sgn}(\Delta m_{13}^2), \Delta m_{12}^2, \Delta m_{13}^2, \sin^2 2\mathbf{q}_{12}, \sin^2 2\mathbf{q}_{23}, \mathbf{L}, \mathbf{E})$$

3 unknowns, 2 parameters under control L, E, neutrino/antineutrino Need several independent measurements to learn about underlying physics parameters

Matter Effects in Neutrino Propagation

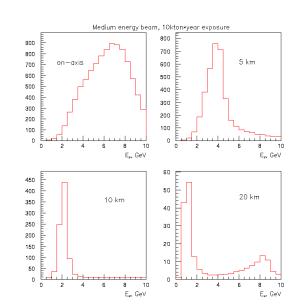


- •Neutrinos move in an effective potential → shift of energy levels(masses), common to all neutrinos
- •Electron neutrinos/antineutrinos have additional (CC) interactions ←→ addition mass shifts

- Matter effects reduce mass of ν_e and increase mass of $\overline{\nu}_e$
- Matter effects increase Δm^2_{23} for normal hierarchy and reduce Δm^2_{23} for inverted hierarchy for neutrinos, opposite for antineutrinos

Anatomy of Bi-probability Ellipses

Minakata and Nunokawa, hep-ph/0108085


Observables are:

- ◆P (neutrino appearance)
- •P (antineutrino appearance)

Matter effects and CP violation effects are of the same order as the main oscillation (for a NuMI baseline)

Off-axis NuMI Beams: Unavoidable By-product of the MINOS Experiment

- •Beam energy defined by the detector position (off-axis, Beavis et al)
- Narrow energy range (minimize NC-induced background)
- Simultaneous operation (with MI NOS and/or other detectors)
- •~ 2 GeV energy:
 - Below τ threshold
 - Relatively high rates per proton, especially for <u>antineutrinos</u>
- Matter effects to amplify to differentiate mass hierarchies
- •Baselines 700 1000 km

NuMI Challenge: "have" beam, need a new detector

- Surface (or light overburden)
 - High rate of cosmic μ's
 - Cosmic-induced neutrons
- > But:
 - ◆ Duty cycle 0.5x10⁻⁵
 - Known direction
 - Observed energy > 1 GeV

Principal focus: electron neutrinos identification

Good sampling (in terms of radiation/Moliere length)

Large mass:

- maximize mass/radiation length
- cheap

Off-axis collaboration: Letter of Intent 2002,

Proposal in preparation (Now)

NuMI Off-axis Experiment

Low Z imaging calorimeter: particle board ~30% of radiation length thick

- Liquid scintillator or
- Glass RPC

Electron ID efficiency \sim 30% while keeping NC background below intrinsic ν_e level Well known and understood detector technologies

Primarily the engineering challenge of (cheaply) constructing a very massive detector

How massive??

50 kton detector, 5 years run =>

- \triangleright 10% measurement if $\sin^2 2\theta_{13}$ at the CHOOZ limit, or
- > 3σ evidence if $\sin^2 2\theta_{13}$ factor 10 below the CHOOZ limit (normal hierarchy, δ =0), or
- Factor 20 improvement of the limit

NuMI Off-axis Experiment

Low Z imaging calorimeter: particle board ~30% of radiation length thick

- Liquid scintillator or
- Glass RPC

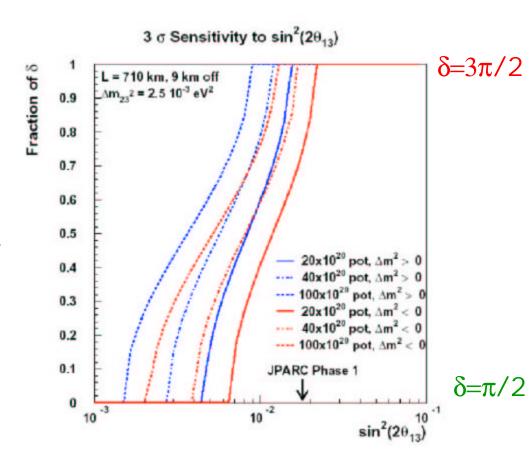
Electron ID efficiency \sim 30% while keeping NC background below intrinsic ν_e level Well known and understood detector technologies

Primarily the engineering challenge of (cheaply) constructing a very massive detector

How massive??

50 kton detector, 5 years run =>

- \triangleright 10% measurement if $\sin^2 2\theta_{13}$ at the CHOOZ limit, or
- > 3σ evidence if $\sin^2 2\theta_{13}$ factor 10 below the CHOOZ limit (normal hierarchy, δ =0), or
- Factor 20 improvement of the limit


Observations

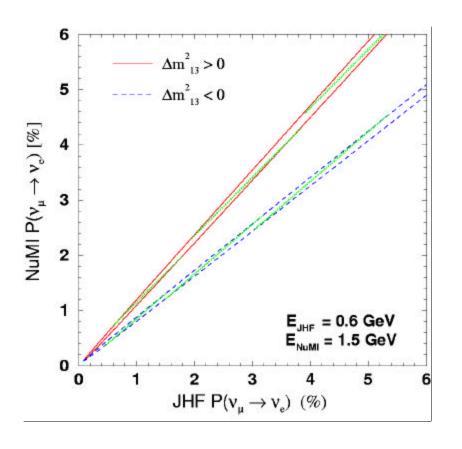
- One of the considered detector designs similar to the INO detector concepts (great minds think alike?) → mutual benefits from the common R&D program (underway):
 - Understanding of glass RPC chambers
 - Design of large area chambers
 - Development of economical techniques for large scale chamber production
 - Development of signal readout techniques
 - Development of hybrid readout VME board (prototype just delivered)
 - Development of ASIC chip for a large scale experiment
- Detector cost a major element of the final selection decision ←→
 cheap detector with costs dominated by manpower ←→ possibility
 for a major impact on the final experiment design

NuMI Off-axis sensitivity?

FAQ: What is the smallest $\sin^2 2\theta_{13}$ one can detect?

- ➤ It depends on the exposure (proton beam intensity, eventual proton driver...)
- ➤ It depends on unknown physics parameters:
 - Mass hierarchy. Matter effect can amplify or attenuate the signal.
 - CP violating angle δ
- Figure of Merit: 3 σ discovery limit as a function of the fracion of the possible range of δ 's

Observations(2)


- Physics reach of the off-axis experiment is determined by a product: (detector mass) x (delivered proton intensity)
- NuMI beam intensity is likely to be below the expected/possible level due to various 'complications'
- Can be remedied, but help needed
- The program of CP violation studies will require a new proton source (a.k.a. superbeam)
- An external help/collaboration would be a huge step towards making it possible

(see talk by Doug Michael)

NuMI and JPARC experiments in numbers (Phase I)

	NuMI Off-axis 50 kton, 85% eff, 5 years, 4x10 ²⁰ pot/y		JHF to SK Phase I, 5 years	
	all	After cuts	all	After cuts
v_{μ} CC (no osc)	28348	6.8	10714	1.8
NC	8650	19.4	4080	9.3
Beam ν_e	604	31.2	292	11
Signal ($\Delta m_{23}^2 = 2.8/3 \text{ x}$ 10 ⁻³ , NuMI /JHF)	867.3	307.9	302	123
FOM (signal/&bckg)		40.7		26.2

Determination of mass hierarchy: complementarity of JPARC and NuMI

Combination of different baselines NuMI + JPARC:

- Oscillation probabilities differ because of difference of the matter effects.
- •Sign of the matter effect depends on the neutrino mass hierarchy.

Minakata, Nunokawa, Parke

Observations (3)

- Studies of neutrino oscillations are likely to be a world-wide program of complementary program involving several complementary experiments (NuMI, JPARC, LNGS, INO, reactors,...)
- Future precise experiments will run into a <u>common</u> brick wall: systematic errors related to our poor (very poor, indeed) understanding of neutrino physics at low energies
- NuMI beam and the near MINOS hall provide a unique opportunity of new, precise experiments: 1000 events/year per one kg of a detector (or 1,000,000 event per ton)
- 'engineering' measurements for the oscillation studies
- Rich program of physics in its own right
- Several proposals/ideas under discussions (MI NERVA,...)
- ➤ An interesting area for a collaborative effort

Conclusions I (NuMI/MINOS)

- ➤ NuMI beam construction nearing completion. First operation expected end of 2004.
- > MI NOS:
 - Far detector operational
 - Near detector 'constructed', will be installed in 2004,
- \triangleright MI NOS: v_{μ} disappearance
 - Will demonstrate oscillatory energy dependence
 - Precision measurements of Δm^2 , $\sin^2(2\theta)$ (10%)
- $\triangleright v_e$ appearance
 - Improved bounds on |U_{e3}|²
- ➤ Physics starting April 2005

Experiment is in a fairly advanced stage, but a lot of opportunities for a new interested parties to make a significant contributions still exist.

Conclusions II (Off-axis)

- NuMI Off-axis beam offers a very powerful tool to study nue appearance
- ▶ Phase I detector will establish the existence of the effct (or improve the CHOOZ limit by a factor of ~20). With some luck it may establish the mass hierarchy, or even detect CP violation
- ➤ Phase II detector + proton driver may be able to establish/measure parameters of CP violation in a neutrino sector, or improve the limit by another factor of 10..

Conclusions III (General)

- ❖ Neutrino Physics is an exciting field for many years to come
- ❖ Most likely several experiments with different running conditions will be required to unravel the underlying physics. Healthy complementary program is shaping up (JPARC/LNGS/INO/others).
- ❖ Fermilab/NuMI beam is uniquely matched to this physics in terms of beam intensity, flexibility, beam energy, and potential sourceto-detector distances that could be available.
- ❖ There are many opportunities for collaborative efforts. In fact we need a lot of external help to fully exploit a physics potential of the NuMI beam.
- ❖ IT IS FUN TIME FOR NEUTRINO PHYSICS. LET'S SHARE THE FUN.