Linear Collider Physics Measurements

- Introduction
- Tevatron/LHC
- LC Detector
- Higgs Measurements
- SUSY
- Smuons/Selectrons
- WW Scattering
- Summary

Gene Fisk 11/10/2003

pp SM Higgs Production

Figure 2: The production cross section in picobarns for the standard model Higgs boson in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. These cross sections are based on a calculation by T. Han and S. Willenbrock[3].

SM Higgs Branching Ratios

4

Tevatron Higgs Search Sensitivity '99

SM Higgs Exclusion, Evidence, Discovery 2003 CDF/D0 Collaboration

Figure 24: Integrated luminosities per experiment corresponding to the median expectations for 95% confidence level exclusion, 3σ evidence and 5σ discovery for $m_H = 110 - 130 \text{ GeV}/c^2$. The narrow curves are the updated analysis from this study (2003) and the thicker curves are the results from the previous SHWG Study (1999).

LHC and the SM Higgs

Discovery in full mass range with 10 fb⁻¹

TESLA Detector

DETECTOR TECHNOLOGY OPTIONS: VTX Detector Charged Coupled Devices: 800Mpix Monolithic Active Pixels (CMOS) ... Barrel Tracking Time Projection Chamber; Si Drift Det. Jet chamber; Si Strip Det.; Read-out **EM Calorimeter** Si-W, Crystals Pb-Scintillator: Strips/Tiles w fiber r.o. Hadron Calorimeter SS/w Scintillator strips/tilees/fiber; SS/w RPC r.o.; SS/w GEM r.o. Superconducting Solenoid 4 or 5 T Muon Detectors/Fe Return Yoke **Resistive Plate Chambers:** Scintillator strips w/fiber r.o. Simulation Software

Beam: Time Structure

•NLC 11.4 GHz; JLC 5.7 GHz 1.4 ns between single bunches; ~ 16 empty RF buckets 190 bunches = 266 ns = pulse train. 8.3 ms = 1st bunch of ea train Δt 0.75 X 10¹⁰ e's/bunch implies about 6 MW per beam.

•TESLA 1.3 GHz 337ns between single bunches; ~ 440 empty RF buckets 2820 bunches = 950 μ s = pulse train 200 ms = 1st bunch of ea train Δ t 2 X 10¹⁰ e's/bunch implies about 10 MW per beam.

Momentum Resolution (NLC design) p = 100 GeV/c

LC Higgs

Three requirements to claim a Higgs:

1. Observe a neutral scalar particle: $h^0 \Rightarrow f + f'(LHC)$ and measure its mass well (LHC and LC). In LC one can use the recoil against the Z as a constraint. $\Delta M_h/M_h = 0.1 - 1\%, 0.03\%$

2. Show that its branching ratios are proportional to mass.

e.g. in the SM relative rates for h^o(120) => b, c, τ pairs should be 72% : 3% : 7%. Done to ~ 20% at LHC ; few % at LC. LC can also measure the rate of H Z(vv).

3. Measure the Higgs self coupling:

double Higgs-strahlung: $e^+e^- \rightarrow Zhh$

Castanier et al hep-ex/0101028

210

220

 $V(\Phi)$

Beam Pol

Use 6 jets; requires excellent jet energy resolution; can enhance σ 's with positron polarization. Determine: $\Delta\lambda/\lambda$ to ~20 – 30% in 1000 fb⁻¹

230

√s, GeV

240

250

 $M_{H}^{2} = 4 v^{2}$; $g_{HHH} = 6 v/\sqrt{2}$

Making these measurements requires ...

- a. Superb vertex detection: 5µ space pts., secondary vertex definition. Si detector R&D
- b. Momentum resolution: $\Delta p/p = 0.5\%$ mass resolution @ 100 GeV/c. Low mass Si
- c. b, c separation w/high purity and high eff.: e.g. BR meas.Requires a. & b. Particle I D?
- d. Calorimetry with the ability to separate $W/Z \rightarrow j_1 j_2$: E-flow algorithm, Simul. &TB B = 5T, Small R_m. 5T = R&D
- e. Elimination of backgrounds.

TESLA LC-PHSM-2001-038

Higgs: low mass meas. simulation Battaglia & Desch hep-ph/0101165

FIGURE 2. The Higgs boson mass reconstructed in the $H^0 \to b\bar{b}$, $Z^0 \to \ell^+\ell^-$ channel for $M_H=120 \text{ GeV}$ (left) and in the $H^0 \to WW^*$, $Z^0 \to \ell^+\ell^-$ channel for $M_H=150 \text{ GeV}$

$e^{+} + e^{-} \rightarrow Z + H^{0}; Z \rightarrow I^{+} + I^{-}; H^{0} \rightarrow b + b$

The analysis of Higgs mass and BR's depends heavily on tagging b's and the determination of jet energies. The jet energy resolution depends on detector design and whether the energy-flow algorithm works. This requires prototype detector tests with beams and a thorough understanding of how the beam tests couple jet energy resolution. R&D: Tracking, Calorimetry, Simulation, Test beam meas.

Gene Fisk 11/10/2003

Not the only worry: Theory

The single Higgs SM is consistent with the present data, but the theory is not complete:

 Calculations of M_H are unstable to quantum corrections. Radiative corrections at the Planck scale require phenomenal cancellation – to something like 30 decimal places (the hierarchy problem).
Gauge interaction unification doesn't occur.

2. The EW symmetry breaking could be induced by fundamental scalar fields (Higgs) or composite objects (not a Higgs).

 $\alpha^{-1} \stackrel{60}{=} \begin{array}{c} \alpha_{1}^{-1} \\ \alpha_{2}^{-1} \\ 20 \\ \alpha_{3}^{-1} \\ 0 \\ 10^{4} \\ 10^{8} \\ 10^{12} \\ 10^{16} \\ 10^{20} \\ 0 \\ 0 \\ (GeV) \end{array}$

A plausible extension, that can embed the SM is Supersymmetry; all particles have a super-partner with complementary spin. There are two complex Higgs doublets f_1 , f_2 to give mass separately to up- and down-type fermions. EWSB gives the W/Z masses and there are 5 Higgs states: h^0 , H^0 (scalars), A^0 (pseudoscalar) and H^{\perp} (charged Higgs). The ratio $< f_1 > / < f_2 > = tanb$ is an unknown parameter, along with masses of fundamental scalars, spin ½ states, etc. Gene Fisk_11/10/2003

SUSY at the LHC

Particle	SUSY Partner
electron e	selectron e (J=0)
muon m	smuon m "
quarks q	squarks q "
gluons g	gluinos g (J= ½)
etc.	

CERN will find SUSY cascade decays as an excess of events at large M_{eff} or large missing Et.

\overline{q} $\overline{\chi}_{2}^{0}$ $\overline{1}^{+}$ 1^{+} 1^{+} $\overline{\chi}_{1}^{0}$ $\overline{\chi}_{1}^{0}$ $\overline{\chi}_{1}^{0}$ 1^{+} 1^{+} $\overline{\chi}_{1}^{0}$ $\overline{\chi}_{1}^{0}$ $\overline{\chi}_{1}^{0}$ $\overline{\chi}_{1}^{0}$ 1^{+} $\overline{\chi}_{1}^{0}$ $\overline{\chi}_{$

3 isolated leptons

+ 2 b-jets

+ Et^{miss}

Untangling SUSY states w/H.C. can be tough.

photon g	photino g (J= ½)
Z	zino Z "
Higgs f₁	Higgsino f₁ "
Higgs f₂	Higgsino f₂ "
W	Wino W "
н	Higgsino H "

SUSY: Smuons

Production of $\mathbf{m}_{,}$, partner of the righthanded muon, via eter? $\mathbf{\tilde{m}}_{,}^{+}\mathbf{\tilde{m}}_{,}^{-}$. Production of scalar smuon pairs is p-wave which leads to a \mathbf{b}^{3} threshold cross section that can be measured once the mass is known.

Because the spin of the smuon is 0 its decay to a μ and neutralino χ is isotropic in the rest frame of the smuon and because the smuon's momentum is fixed in the lab, the energy distribution of the μ is uniform with E[±] given by:

 $E \pm = (VS/4) (1 \pm \beta) (1 - m_{\tilde{m}}^2/m_c^2);$

 $\beta = (1 - 4m_m^2/s)^{1/2}$

Such measurements depend on:

- Polarization of the e⁺ and e⁻ beams.
- 2. Clean environment.
- 3. 4π coverage.

18

SUSY: Selectrons

Production of selectron pairs involves two diagrams:

- t-channel c⁰ exchange dominates and allows measurement of neutralino couplings (gaugino vs. higgsino) to lepton/slepton.
- (2) s-channel g/Z process only for $e_L^+ e_L^-$ and $e_R^+ e_R^-$. Bkgnd WW suppressed for beam e_R^- .

End point measurements for selectrons are complicated since $\tilde{e}_{R}^{+}\tilde{e}_{R}^{-}, \tilde{e}_{R}^{+}\tilde{e}_{L}^{-}, \tilde{e}_{L}^{+}\tilde{e}_{R}^{-}, \& \tilde{e}_{L}^{+}\tilde{e}_{L}^{-}$ states appear simultaneously.

Upper and lower end points of the decay dN/dE from: $e_{L,R} \otimes e^+ c_1^0$ gives masses for the L, R selectrons and neutralino. Angular distribution of decay electrons with polarized beams give quantum numbers and coupling of exchanged c_1^0 and give information on neutralino mixing.

R&D Issues: Polarized e+ beam; bkgd control.

WW Scattering/Strong Coupling

See articles by C. Burgard (); T. Barklow, Dawson, Haber & Siegrist in Snowmass 1996 Proc. also T. Barklow LCWS_2000 Proc., p 568

If there is Strong Coupling we expect to see modifications to SM cross sections through longitudinally polarized WW and ZZ scattering. Two 4-dimensional interactions can be introduced in the Lagrangian that respect SU(2) and describe the longitudinal boson scattering. These anomalous couplings, α_4 and $\alpha_5 = 0$ in the SM. For new physics at Λ_i the values of α_i are determined from:

 $\alpha_i/(16\pi^2) = (v/\Lambda_i^*)^2$, for $\Lambda_i \sim 1 \text{TeV}$, $\alpha_i = 9.6$

68% C.L.	LHC	TESLA 800 GeV
$\Delta\chi^2 = 1$	$100 {\rm fb}^{-1}$	$1000{\rm fb}^{-1}, P_{\rm c^-}=80\%, P_{\rm c^+}=40\%$
α_{ij}	$-0.17 \dots +1.7$	$-1.1 \dots +0.8$
Ω_{25}	$-0.35\ldots+1.2$	$-0.4 \dots +0.3$
Λ_{4}^{*}	$2.3\mathrm{TeV}$	$2.9\mathrm{TeV}$
Λ_5^*	$2.8\mathrm{TeV}$	$4.9\mathrm{TeV}$

R. Chierici, et al. ibid.

WW Scattering/Strong Coupling - II

For the anomalous magnetic moment of the W ($\Delta \kappa_{\gamma,Z}$), the LC at 500 GeV with 1000fb⁻¹ has 10-20 times better precision than the LHC for various Strong Coupling models.

 $\gamma\gamma \rightarrow WW$ gives orthogonal information of comparable precision.

Summary

- Many precise measurements can be done with a linear collider to understand:
 - Electroweak Symmetry Breaking
 - Higgs discovery what kind of Higgs? BRs, masses,
 - b,c tagging, top, etc. R&D implications
 - If SUSY, then untangling observations requires:

polarization, understanding backgrounds,

- Strong coupling.
- R&D Areas: Accelerator and detector instrumentation, accelerator components, detector development for all systems: vertex detector, tracking, calorimetry, muons, SC solenoid, simulation and analysis software, beam tests, etc.
- We must continue to forge international collaboration on the R&D, proposal development and construction of accelerator and detector components.
- We understand our scientific goals and what the LC will be able to do. We must convince our scientific colleagues and government officials to support this science.