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Status Overview

e Neutrino Generator
— Nuance: ICAL configuration with 3-flavour oscillation code (D. Casper)
— Local: (HRI)
— (Neugen : H. Gallagher) U Not been used so far

e Detector Simulation
— Geant (3.2.1 Fortran) program in place; now with magnetic field map as well.

e Track Reconstruction
— ROOT (3.03 C++) program fits muons to helical trajectory, with energy loss;
still to be refined.
— Hadron hit reconstruction: still some problems.

x One-line status summary: programs tested and more or less ok; “data” being
analysed.



1 The Nuance generator

[J Atmospheric neutrinos alone analysed so far.

[ Simplified ICAL detector geometry encoded, in which events are generated.

[J Typically interesting events have F > 1-2 GeV.

[ events, roughly in
1/3~1/3~1/3 ~ 0~ 0 ratio

O Analysis ONLY of CC events with u in the final state (electron CC events mostly

lost)

[ MAJOR ISSUE YET TO BE STUDIED: Mis-identification of pions as muons coming

from NC as well as a subset of CC events.

1.1 Physics goals of analysis

[0 Main goal: Study oscillation pattern in atmospheric neutrino events.
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where the resolution function is given by the Lorentzian
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o is the resolution in L/FE of the ICAL detector.
We therefore perform
[0 A detailed study of the resolutions in F, 6 and therefore L and L/FE.
[J ICAL geometry is similar to that of the MONOLITH collab.
[J Our aim: to re-invent this wheel



2 Results

e The generator understands the ICAL detector configuration in a simplified fashion
(includes iron and glass, mainly).

e Here we present some results with atmospheric neutrinos, using the Honda flux
for ICAL detector with 140 layers of 6 cm thick iron plates. (Some detector opti-
misation at the end of the first complete round of simulation is envisaged).

2.1 Energy distribution
Event distribution in energy for 25 years’ data at ICAL.

Figure on left

e Muons (red) and neutrinos (pink) lines (with oscillations) and as blue and
green lines (without oscillations).

e Ratio of number of muons to neutrinos at a given energy (in bins of 1 GeV)
~ 0.7-0.8, especially for energies less than 10 GeV.

Figure on right
e Energy resolution with muons alone and including hadrons as well.
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e cos 6, distribution; left: for neutrinos, right: for muons, with and without oscil-

lations.
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[0 Nuance events are passed through the GEANT program to get a pattern of
hits in ICAL.

[0 The hits are recontructed to get E,, 0, Ehaqa, in a ROOT program.

[1 The relevant resolutions are studied.
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Figure 1: E resolution from reconstruction (left); muon only (right).
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Figure 2: L resolution from reconstruction (left); muon only (right).



L/FE resolution
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Figure 3: L resolution from reconstruction (left); muon only (right).

[0 The worst data is at small L/FE where there are small number of events. May
be interesting to bin the actual data in many different bin sets to see the sensitivity
to this small L/E region. One possibility is to look at vertical planes of iron.

[ We therefore get a resolution of AL/E = (0.43/2)L/E. We will use this to do
a Physics analysis (reconstruction of oscillation parameters) of the Nuance events.

[1 We use different input values of do3 and 023 to generate different sets of Nuance
data.

[ We collect them according to the ‘up‘ and ‘down‘ criteria, to generate the
standard L/FE plot. We then fit this using the formula for P,, shown earlier, to
recover these parameters.

[J Following are a set of plots for events and the reconstructed values of the
parameters for dy3 = 2,3, 5,8 x 1072 eV? and sin? 260,53 = 1.

Parameter | Original | Fitted %

Value Value 14 d.o.f.
5 years data

o3 2x107%]1.76 x 1073

sin ¢ 0.707 0.707 17.86

o3 3x107%[2.62x 1073

sin ¢ 0.707 0.707 25.44

Jo3 5x 1073 | 4.41 x 1073

sin ¢ 0.707 0.656 12.80

523 8 % 10_3 8.85 % 10_3

sin ¢ 0.707 0.650 8.03

Table 1: Fits to parameters do3 and sint for 5 years data set. There are 16 L/E bins with the
resolution parameter kept fixed to the value of 0.22.
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Figure 4: Analysis of 5 years up/down events with two-flavour oscillations do3 = 2 x 1072 e¢V? and
tany = 1.
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Figure 5: Analysis of 5 years up/down events with two-flavour oscillations do3 = 3 X 1072 eV? and
tany = 1.
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Figure 6: Analysis of 5 years up/down events with two-flavour oscillations ds3 =

tany = 1.
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Figure 7: Analysis of 5 years up/down events with two-flavour oscillations do3 = 8 X 1072 eV? and

tany = 1.



e Other physics at INO: Phase II

[0 This is interesting if and only if (1) sin ;3 # 0 (and not too small) and (2) if
we get a beam from a neutrino-factory in the future.

[J The inputs used are muon detection threshold of 2 GeV and muon energy
resolution of 5 percent. All measurements in phase II involve wrong sign muon
detection and so backgrounds are low.

[0 Reach of sin #3:

For a nu factory as a function of the muon detection threshold energy. The
reach is defined as the value that will yield 10 signal events (wrong sign muons) for
a given kT-yr exposure.
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Figure 8: sin ;3 reach as a function of the muon threshold energy. Left panel is for JHF to Rammam
baseline. Right panel is for Fermilab to PUSHEP baseline.



[0 Sign of do3: The number of wrong-sign muon events as a function of dg3
for three base lines from a neutrino factory in Japan, the detector being at Bei-
jing,Rammam or PUSHEP.The sign discriminating capability for either of the two
sites Rammam or PUSHEP is clearly demonstrated.
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Figure 9: The number of wrong-sign muon events vs Am3, corresponding to baselines from JHF to
Beijing, Rammam and PUSHEP.

[1 CP violation is weak for the Japan-PUSHEP baseline, it is clearly present
for the J apan—Ranll&I)lam baseline.
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Figure 10: CP phase as a function of L.
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