

SPIDER DECAL

Imperial College London ♦ SPIDER ♦ Digital calorimetry ♦ TPAC - Deep Pwell ♦ DECAL Future beam tests ♦ Wishlist

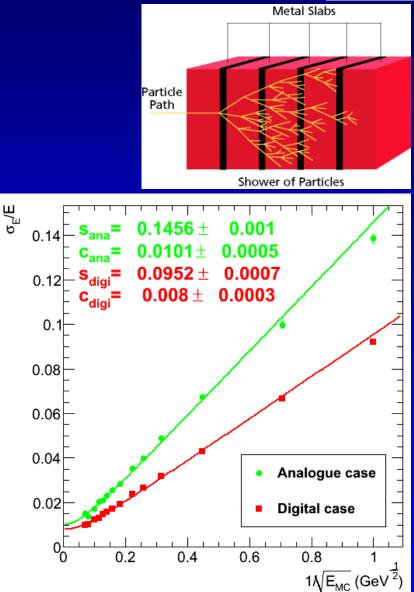
PER AD ARDUA ALTA

J.J. Velthuis for the **SPIDER** collaboration

Jaap Velthuis, University of Bristol

SPIDER

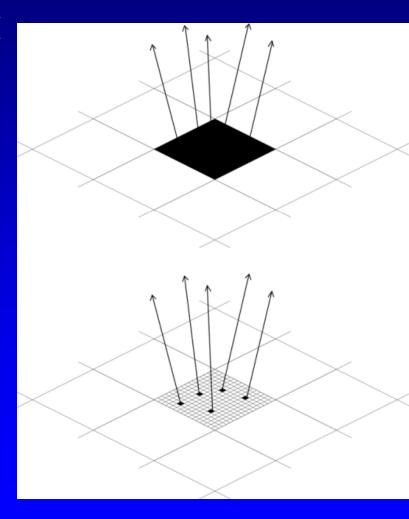
VK Collaboration working on Silicon Pixel R&D for future colliders.


- Demonstrate a new improved technique for EM calorimetry
- Develop a MAPS sensor with in-pixel data processing for tracking applications
- In principle funded until end of 2012

TPAC: Digital Calorimetry

- Average number of charged particles in EM shower ∝ incident energy
 - Fluctuations due to statistical nature of shower
- Average energy in sensitive layers
 number of charged particles
 - Fluctuations due to angle of incidence, velocity and Landau spread
- Hence, number of charged particles is an intrinsically better measure than the energy deposited
 - Clearest with ideal calorimeter; no experimental effects
 - Energy deposited ("analogue" ECAL) resolution ~50% worse than number of particles ("digital" ECAL) resolution

Digital Calorimetry: Concept

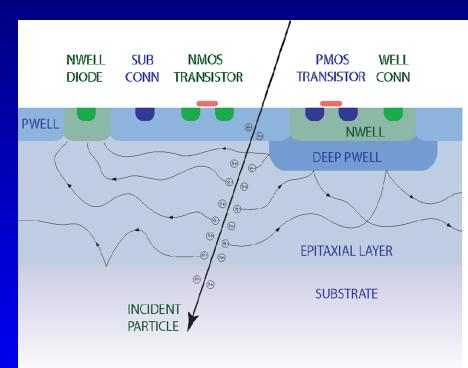


Can we measure the number of charged particles?

- Possible to get close to the analogue ideal resolution with low noise electronics
- Can we get anywhere near the ideal resolution for the digital case?
 - Make pixellated detector with small pixels
 - Probability of more than one charged particle per pixel can be made small
 - Allows binary readout = hit/no hit
 - Problem: charge sharing

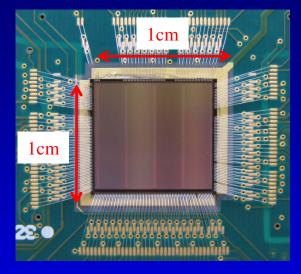
EM shower density ~100/mm² in core

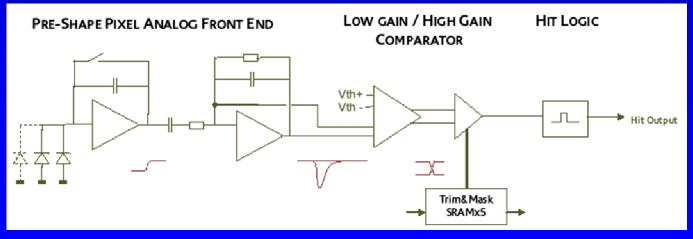
- Need pixels ~ 50μm
- Results in huge number of pixels in a real ECAL ~ 10¹² pixels
- Need readout integrated into pixel
- Implement as CMOS MAPS sensor



Problem in MAPS:

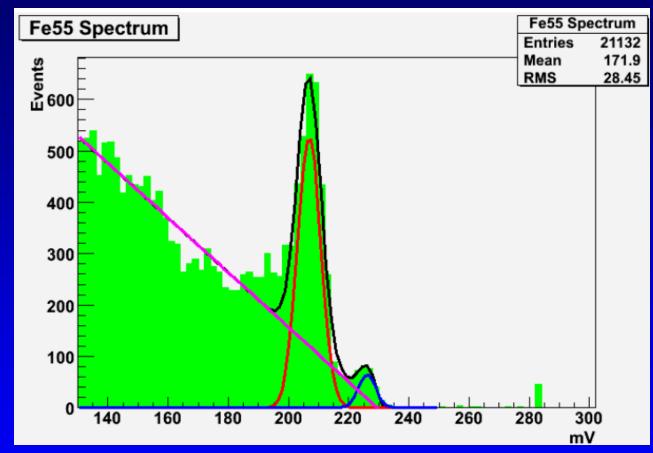
- PMOS electronics need Nwell
- Nwell acts as charge collection diode
- So can't make PMOS without losing huge amount of Q
- ◇ New development: make deep pwell with Nwell inside
 → can do CMOS
 - Road to data processing in pixel





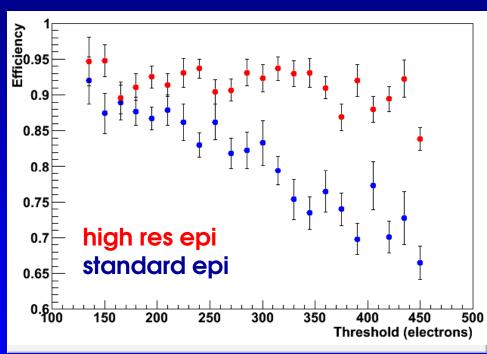
TPAC sensor

- ♦ 168x168 pixels=28k, each 50×50µm²
 0.18 µm CMOS
- Every pixel has 4 diodes, Q-preamp, mask and 4-bit pedestal trim, asynchronous comparator and monostable to give hit/no hit response
- Pixel hits stored with 13-bit timestamp onsensor until end of bunch train
- Memory for data storage inactive; 11% dead area in four columns



Jaap Velthuis, University of Bristol

TPAC Fe55


- ◆ Primary ⁵⁵Fe peak gives calibrated gain of 128μ V/e-
- ♦ Width of ⁵⁵Fe peak gives noise of 27e-
- \diamond See K α and K β clearly separated

TPAC in beam tests

University of

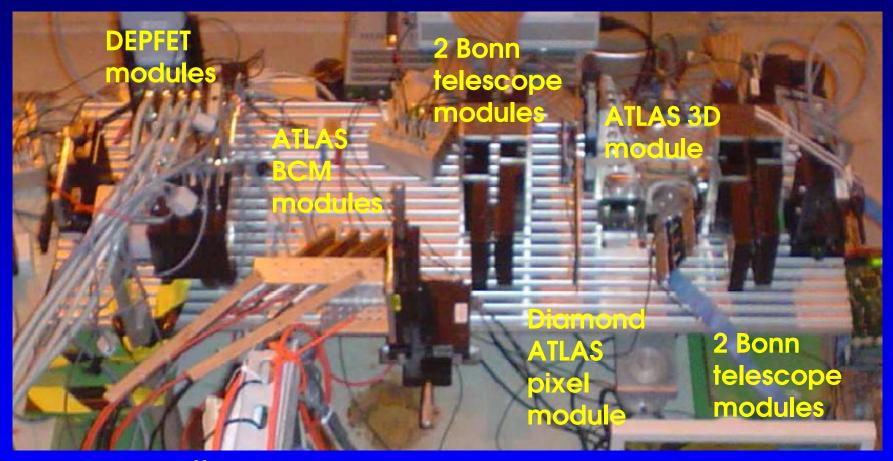
- 120 GeV π & 20-120 GeV e⁻
- 6 TPAC sensors (layers) in stack
- 170k pixels in total
- 1cm x 1cm active area
- Three scintillators/PMTs installed
 - Used to tag time of particles within bunch trains
- ♦ Data seems good
 - Scintillators/PMTs give good time tags for particles
 - Events were seen in all layers (including high resistivity)

DECAL chip

- TPAC too small for real EM shower containment; make large scale sensor
- SPIDER will develop a new chip for calorimetry: DECAL
 - Chip fabricated in 2011
- ♦ Will build proof-of-principle stack from DECAL
 - 6×6 cm2 planes
 - 30 layers
 - 24 X_o deep
 - Beam test stack in 2012
 - Part of CALICE collaboration
- DECAL tests are addressing an open question: can digital calorimeter yield very good energy resolution?

Future beam tests

- ◇ TPAC: beam test at DESY in Feb 2010
 - Electron scan done at CERN, 20–100 GeV but no tracking
 - Need telescope to reconstruct start of shower
 - DESY 1-6GeV with tracking to locate shower centre
- ♦ Testing large DECAL sensor stack in 2012
 - Major sample needed for full proof-of-principle
 - CERN electrons 6-100 GeV ~ 6 weeks
 - DESY electrons 1-6 GeV ~ 3 weeks
 - Also some pion runs for calibration
 - All with tracking telescope


Our needs/wishes

- ♦ Beam time!
- Need for telescope
 - Really like EUDET concept:
 - ◇ Know the TLU; no big interfacing problems to be solved onsite
 - ♦ Tracking and alignment software provided
 - ♦ Essentially get the tracks
- Would like patch panels (bnc and fiber optic) between hut and area
 - Cabling is pain
- ♦ Would like large XY-stage
- If possible could arrange many user beam tests
 - Remote shifts; saves lots of travel money

Nice example

Tested 4 different devices at the same time

- Currently only possible because 1 institute + very friendly colleagues

Jaap Velthuis, University of Bristol

Summary

 SPIDER is developing a digital calorimeter proofof-principle device.

- New MAPS chip will be developed
- Stack complete in 2012
- Would be great to have common infrastructure: patch panels, large XY stage & TLU
- Very interested in collaborating with many other users