

source: V. Ammosov

➔ Dubna

source: P.Rukoyatkin, E.Strokovsky

Václav Vrba Institute of Physics, AS CR, Prague

-LCTW09, LAL, Nov 4, 2009

IHEP accelerator

70 GeV accelerator complex for protons =

Linac - URAL-30, 30MeV + Booster – 1.5 GeV + Main ring – 70 GeV proton synchrotron

Works two times per year March-April Nov-Dec For each run 1 month for physics

-Linac+Booster

IHEP accelerator parameters

- cycle time 10 s
- spill time 1.8 s
- -intensity ~ 1.10¹³ p/cycle
- -number of bunches 30
- RF structure: bunch length 40 ns, bunch spacing – 160 ns
- beams are from extracted protons and internal targets

Beams

In the 1BV exp hall are from internal targets with limited intensity (<10**7 part/spill):

- -negative hadrons up to 55 GeV
- -positive hadrons up to 20 GeV
- -photons, electrons up to 30 GeV
- -70 GeV protons from crystals

In the exp gallery are from extracted protons, have high intensity :

- -protons
- -intensive secondary hadrons
- -neutrino

-Tests with e and h beams can be done in one zone of beam line N 2B.

Particle type	Electron beam range, GeV/c	Hadron beam range, GeV/c
e	1- 45	-
h	1- 45	33 - 55
μ	1- 45	33 - 55

-Muon halo over 1 m2 with intensity ~ 10**6 can be used for monitoring purposes

-Electron						
Energy, GeV	Beam resol.,	ECAL resol.,	BTS resol.,			
	%	%	%			
1	4.3	11.0	2.05			
2	5.5	7.8	1.03			
5	5.6	4.9	0.43			
10	3.8	3.5	0.24			
27	1.2	2.1	0.15			
45	1.0	1.6	0.13			

Beam tagging system allows to keep beam resolution
~10 times better than expected ECAL resolution

- Beam spot, \varnothing ~ 3 cm

–Electron beam

Admixtures of h⁻ and μ^- allow to measure calorimetric response simultaneously for e⁻, h⁻ and μ^- using Cherenkov counter

-Hadron beam

- Momentum range (33-55) GeV/c
- Beam composition

π^{-}	96.4 %	
μ	1.0 %	
k ⁻	2.3 %	
p	0.3 %	

–Intensity for $\Delta p/p = \pm 1\%$

Energy, GeV	Intensity in spill on 10 ¹² pot	
33	1.10 ⁶	
40	3·10 ⁶	
55	2.10^{5}	

-70 GeV proton beam is also available

Beam monitoring system

 $S_1 \div S_4$, A_1 , A_2 - scintillation counters PC₁, PC₂ - proportional chambers H₁, H₂ - scintillation hodoscopes C₁, C₂ - threshold cherenkov counters D₁, D₂ - differential cherenkov counters S_{TOF} - time-of-flight scintillation counter

- -Own DAQ system
- -Trigger signals are available
- -Beam experts are available

Zone sizes:

- Beam height above flow 2.15 m
- 5/40 ton crane hook height 8 m
- Horizontal space +/-3 m
- Longitudinal space 10 m

Two counting rooms (32 m2 each) above zone are available with local net and internet connections

–Part of test zone–Beam axis is indicated by tube

-Antipov's SIGMA magnet

Universal beam line N 22

• Proton beam: up to 70 GeV/c , $I = 10^6 - 10^{10}$ pps

 Secondary hadron beam negative: 7 - 60 GeV/c, I < 6.10⁸ pps positive: 7 - 60 GeV/c, I < 10¹⁰ pps

• electron/positron beam: 7 – 40 GeV/c , I < 5.10⁵ pps

Conclusion

Protvino is ideal site for ILC beam tests

1. Suitable range of particle momentum

e⁻ : (1-45) GeV/c h^{+/-} : (1-60) GeV/c μ⁻ : (1-55) GeV/c

2. Variety of test beam zones are available

You are welcome !

Beam time is available ~2 months/year (April, Nov-Dec)

Contact person: Dr. Vladimir Ammosov e-maill: ammosov@mail.ihep.ru

-Present accelerator facilities of LHEP

-Beam lines and setups in the experimental area

Parameter	Units	I	Ш
Momentum range	GeV/c	≅ 1 – 4.5	≅ 1 – 6.5 (6.8)
Intensity at p _{max}	ррс	2-4·10 ⁶	2 – 4·10 ⁷
Polarization		≅ 0.55	≅ 0.90
Momentum spread (FWHM)	%	≅ 5	≅ 5
Angular spread (σ)	mr	1 – 1.5	1
Full beam size at PPT	mm	≤ 30	≤ 30

-P.Rukoyatkin, "Nuclotron beam lines...", SPIN-Praha-2009