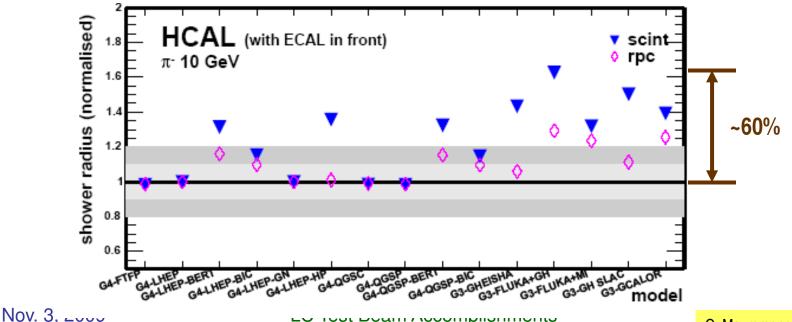
(I)LC Test Beam Accomplishments

LCTB09 @ IN2P3 – LAL Nov. 3, 2009 Jae Yu

- •World-wide effort of ILC Detector R&D TB
- •Facilities' Accomplishments
- Detector R&D Accomplishments
- Conclusions
- •Epilogue....

World-wide ILC TB Coordination

- Creation of GDE and faster pace of ILC accelerator R&D demanded detector R&D to keep up
- Many detector groups already have been performing beam tests but the intensity was brought up higher in 2003
 - Fragmented efforts, concerned only on our own projects
- Facilities needed to be able to provide the necessary beam capabilities to the R&D groups
- No clear requirements or demands were known

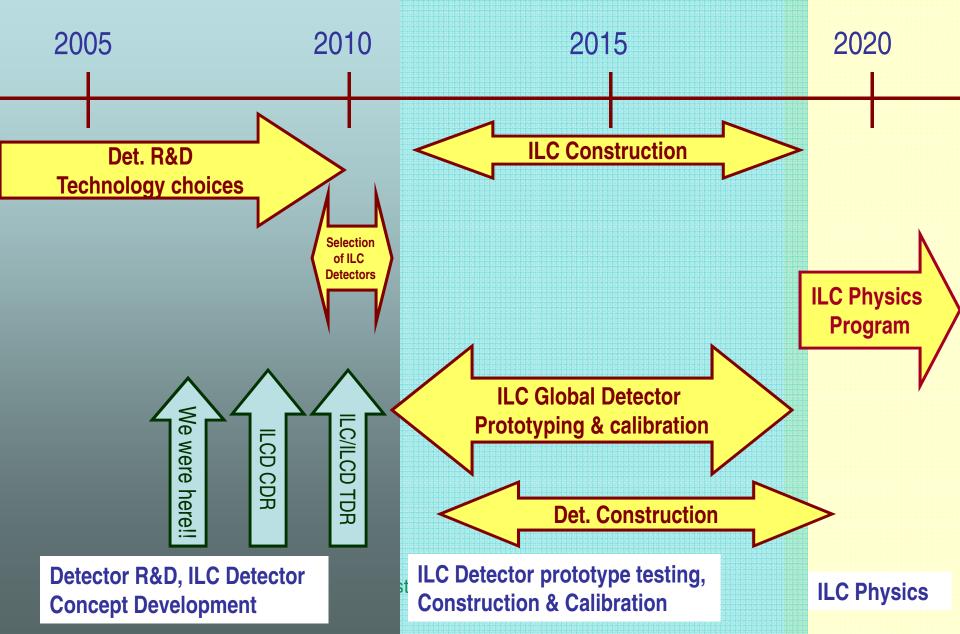

World-wide ILC TB Coordination

- Submitted a roadmap document to FNAL in 2006
 - Defined what calorimeter and muon groups' needs from the facilities
- Led to concerted efforts of world-wide ILC test beam working group and a subsequent IDTB07
 - Provided a forum for us to think about "US" and the common goals
 - Ways to share our expertise and specified facilities
- A lot of work have been done by the R&D groups and the facilities → Apologies for not being able to cover them all!!

Nov. 3, 2009

Some ILC Beam Test Goals in 2005

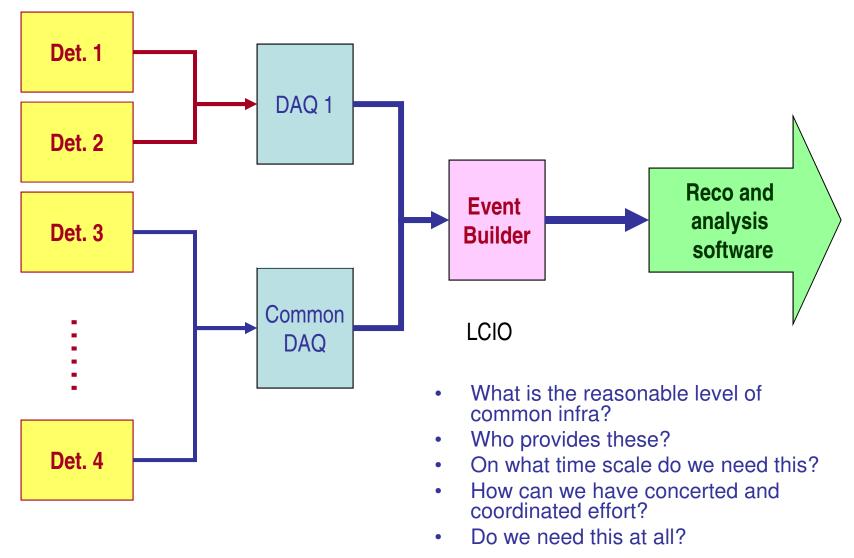
- Detector performance measurement Phase I
 - Necessary to choose good detector technologies that meets the requirements optimized for PFA
- Better simulation tools for more sophisticated PFA development
 - Hadronic shower needs better understanding



Goals at the IDTB07

- Review and assess the current status, capabilities and plans of facilities
- Review and assess the current and planned detector test beam activities
- ✓ Identify requirements for test beams to meet adequately the detector R&D needs
- $\checkmark\,$ Plan and discuss for the future beam test activities
 - ✓ What have we learned from LHC beam tests?
 - ✓ What can we learn from existing ILC test beam activities?
 - ✓ What should the future beam test activities focus?
- Put together a team to write the ILC detector R&D test beam roadmap document which includes all sub-detector systems and the anticipated demands to facilities
- This document was completed and released to the ILC leadership and to the facilities managers July 1, 2007

Nov. 3, 2009


LC Detector Time Line in 2007

R&D Groups' Requests at IDTB07

- Large bore, high field magnet (up to 5T)
 VTX and tracking groups
- ILC beam time structure (1ms beam + 199ms blank)
 VTX, TRK and CAL electronics
- Mimicking hadron jets
 - VTX, TRK and CAL
- Common DAQ hardware and software
- Common online and offline software
 - Reconstruction and analysis software

Point of Merge for Commonality

LC Test Beam Accomplishments

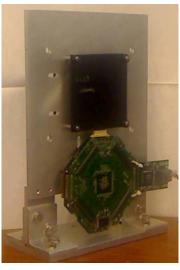
R&D Groups' Requests at IDTB07

- Large bore, high field magnet (up to 5T)
 - VTX and tracking groups
- ILC beam time structure (1ms beam + 199ms blank)
 VTX, TRK and CAL electronics
- Mimicking hadron jets
 - VTX, TRK and CAL
- Common DAQ hardware and software
- Common online and offline software
 - Reconstruction and analysis software
- Tagged neutral hadron beam

Neutral Hadrons Beams??

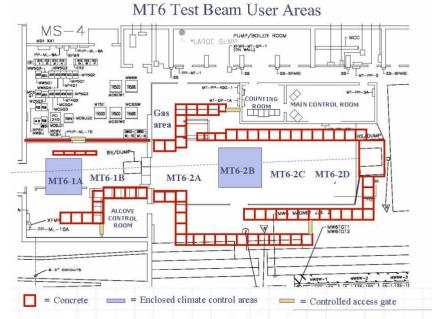
- Do we need beam test with neutral hadrons?
 - Successful PFA means the HCAL measures neutral hadrons
 - Simulation models need some neutral hadron data
 - Hadron calorimeter calibration can use momentum tagged
 neutral hadrons
- Can we trigger effectively?
- What energy range?
 - Which ones do we need to understand better?
- We have been busy with what we have!!
- FNAL moving forward with a proposal for this!

Detector R&D Needs @ IDTB07


Detectors	N_Groups	Particle Species	P (GeV)	Magnet (Tesla)	N_Week s/yr	ILC time structure	Note
BI&MDI	2E+8ESA+1 F+2C+3BC	e	up to 100	Not specified	64		Mostly Iow E elec
Vertex	10	e, π, p; μ	up to 100	1 – 3	40	Yes	
Tracker	3TPC+ 2Si	e, π, p; μ	up to 100	1.5 - >3	20	Yes	
Cal*	5 ECALs+3 DHCALs + 5 AHCALs	e, n, π, K, p; μ	1 ->=120	Not specified	30 – 60	Yes	
Muon/TC MT	3	e, π, μ	1 ->=120	Not specified	12		

*Note: Most calorimeter R&D activities world-wide are organized under CALICE collaboration.

Some of these can work concurrently...


Facilities Accomplishments - FNAL

- By far the most responsive facility
 - Virtually all requests have been met
 - Increased duty factor: Average duty factor of 5% policy has been altered at times to facilitate expeditious completion of beam test experiments
 - Renovated MTBF user area (and fixed the roof leak problem...)
 - Tried out "ping" structures to accommodate ILC like beam structure
 - Not to the fine structure but to the macro-structure (1ms ping+199ms blank)
 - Hadron and electron beam energy to as low as 1GeV
 - High precision pixel telescope and TOF w/ 25ps resol.
 - Tagged neutral hadron availability
 - Meson Center Test Beam Facility Proposal

Fermilab Meson Test User Facility

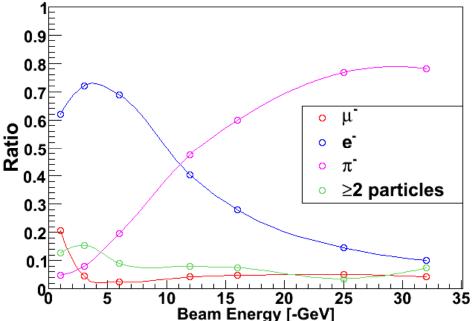
Spacious control room

Signal and HV cables

Gas delivery to 6 locations

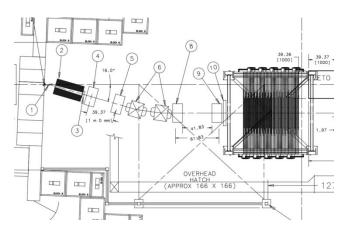
4 station MWPC

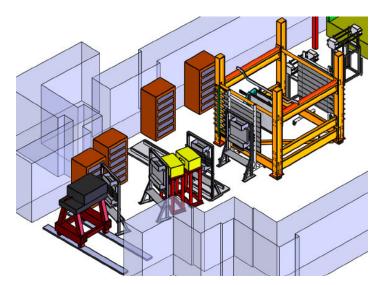
spectrometer


Two motion tables

Nov. 3, 2009

LC Test Beam Accomplishments


Beam Delivery for CALICE


- The CALICE experiment (T978) has been the most comprehensive detector system to be installed at MTest and has summarized their results for beam composition.
- The Fermilab Accelerator
 Division has created beam tunes
 for CALICE as follows:
 Negative 1,2,3,4,6,8,10,12,15,20,30 GeV
 Positive 32 GeV (high rate muon mode), 120 GeV (proton mode)

Tertiary 300 MeV/c Beamline for MINERVA

- The MINERVA experiment requested space to create a new tertiary beamline that could deliver pions down to 300 MeV/c momentum.
- The Particle Physics Division and Accelerator Division have agreed to help and are proceeding on installation.
- Full tracking and TOF will allow for momentum measurement and particle i.d.
- Target station rolls away for other users.
- The full spectrometer will be tested in November, 2009

Facilities Accomplishments - SLAC ESA

Several beam monitoring and radiation damage beam test experiments in 2006 - 2007 •BPM energy spectrometer (T-474/491)

Beam

Switch Yard

- •Synch Stripe energy spectrometer (T-475)
- Collimator design, wakefields (T-480)
- •Bunch length diagnostics (T-487)
- •IP BPMs—background studies (T-488)
- •LCLS beam to ESA (T490)
- Linac BPM prototypes
- •EMI (electro-magnetic interference)

End Station A

+ SiD KPiX Test during T-492

http://www-project.slac.stanford.edu/ilc/testfac/ESA/esa.html

Electrons to PEP-II

Positrona to PEP

PEP-II Positron Source

Electrons to ESA

Positrons

~5 weeks of beam time in each of 2006 and 2007, primary beam characteristics: 28.5 GeV, (0.6-1.5) ·10¹⁰ e/bunch ESA Test Beam facility shut down in 2007 for LCLS construction SLAC colleagues have been working hard to re-start ESA

Nov. 3, 2009

LC Test Beam Accomplishments

Thermionic

Flectron

Source

Polarized

Electron

Source

2-Mile Linge

Damping Rings

Facilities Accomplishments - CERN

- Most frequently used facility for many ILC Detector R&D groups
- Many experimental areas allow access to wide energy range
 - PS: 5 areas with max E up to 3.5 GeV to 24 GeV
 - SPS: 4 areas with max E range up to 400 GeV
- Hosted several ILC detector beam tests
 - CALICE Si/W ECAL+AHCAL+TCMT tool data in 2006 and 2007
 - CALICE GRPC and micro-megas planes
 - Large number of VTX and Tracking groups, LCTPC, SILC...
 - DREAM calorimeter
- Accommodates R&D groups' needs and situations as much as possible
- Well equipped facility with helpful staff
- LHC's schedule puts strain on demand to AD manpower for significant changes → Continued availability expected

Facilities Accomplishments - DESY

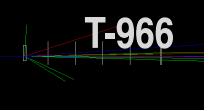
- Continued to provide 1 6 GeV e
 - CALICE Si/W ECAL ran in 2005 and 2006
 - CALICE AHCAL plane tests in 2006 2007
 - CALICE TCMT plane test in 2006
 - CALICE Scint/W ECAL test in 2007
 - Numerous TPC end-plate tests in 2007 200
- Home of EUDET facilities
- Test area 21: EUDET Pixel telescope
- Test area 24: EUDET TPC Testing with large bore (1m dia) solenoid

Facilities: Asian and Russian KEK FTBL: One beamline w/ 0.4 – 3.4 GeV e

- To be shut down for 3 years from 12/09 for KEKB upgrade
- Future operation not yet decided
- JPARC: One beamline w/ 0.5 1.1 GeV hadrons
 - Funding secured and PAC endorsement on 6/09
 - Scheduled to complete mid 2010
- IHEP Beijing: 3 areas 0.4 GeV 1.5GeV
 Shut down 2008 2010 for upgrade
- IHEP Protvino: 8 beam lines with electrons up to 34 GeV and hadrons up to 50 GeV

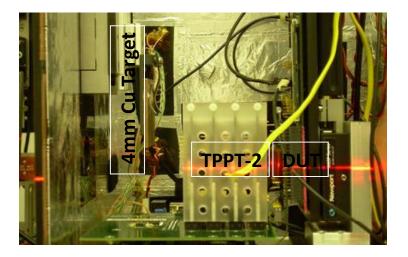
- Available 2 mo/year Nov. 3, 2009 LC Test Beam Accomplishments

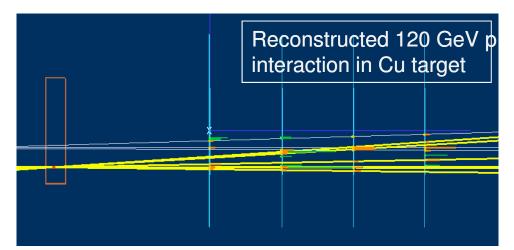
Test Beam Availability

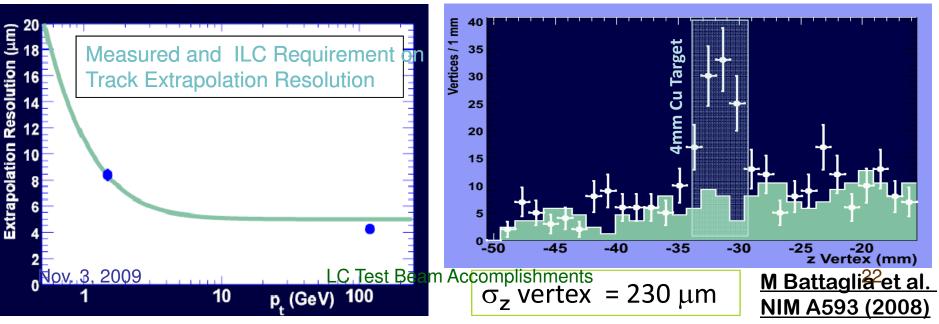

Laboratory	Energy Range	Particles	Availability (IDTB 2007)		
CERN PS	1 - 15 GeV	e, h, μ	LHC absolute priority		
CERN SPS	10 - 400 GeV	e, h, μ	LHC absolute priority		
DESY	1 - 6.5 GeV	e	> 3 months per year		
Fermilab	1-120	e, _π , K, p; μ	continuous (5%), except summer shutdown		
Frascati	25-750 MeV	е	6 months per year		
IHEP Beijing	1.1-1.5 GeV (primary) 0.4-1.2 GeV (secondary)	e [±] e [±] , π [±] , p	Continuous after March 2008 (unavailable before then)		
IHEP Protvino	1-45 GeV	e, _π , K, p; μ	one month, twice per year		
J-PARC	Up to 3GeV	????	Available in 2009 earliest		
KEK Fuji	0.5 - 3.4 GeV	е	Available fall 2007, 240 days/year		
LBNL	1.5 GeV < 55 MeV < 30 MeV	e p n	Continuous		
SLAC	28.5 GeV (primary) 1.0 - 20 GeV (secondary)	e e [±] , p [±] , p	Parasitic to Pep II, non-concurrent with LCLS		
Nov. 3, 2009 LC Test Beam Accomplishments					

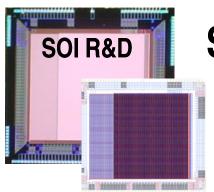
Detector R&D Accomplishments - VTX

- Many options for vertex detectors

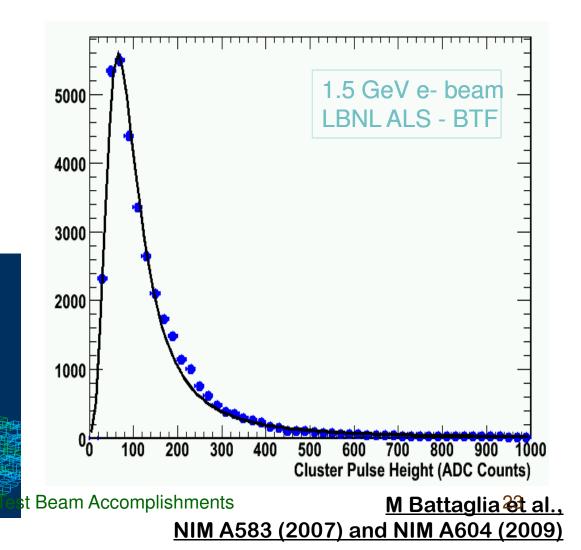

 3 CCDs, 2 MAPs, DEPFET, CronoPix, VIP, 3D...
- Performed beam tests of 1 few weeks at CERN, FNAL, KEK, LBNL and INFN
 - Requirements
 - High energy beams
 - Beams with ILC time structure
 - High field (~3T) magnets needed
 - High density particle environment


- An R&D collaboration would be helpful



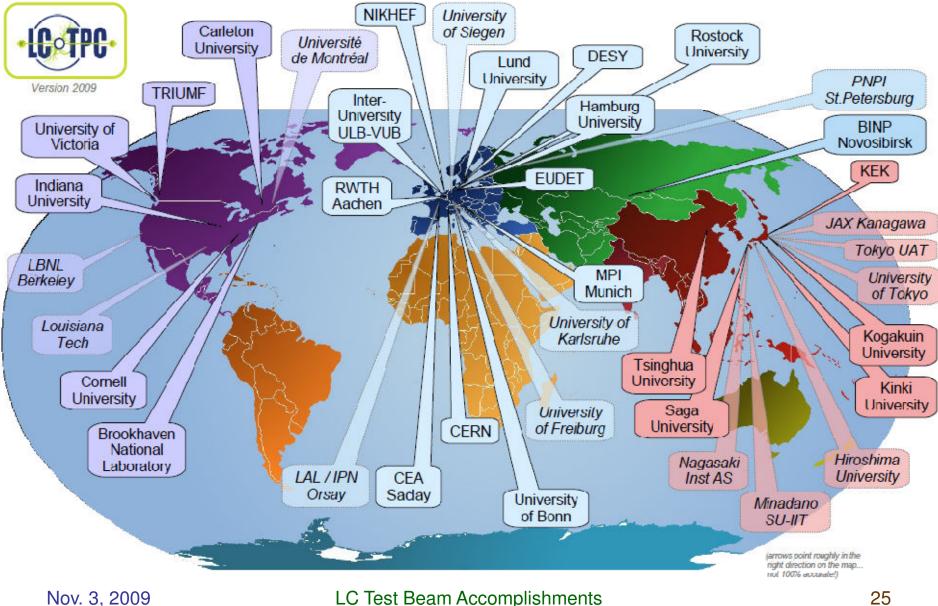

at FNAL MTest: Tracking and Vertexing

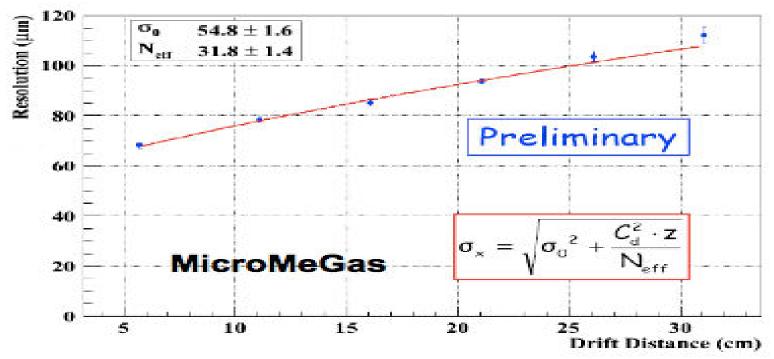
Tracking and Vertex Reconstruction with Thin CMOS Pixel Telescope (LBNL, Purdue U & INFN, Padova)

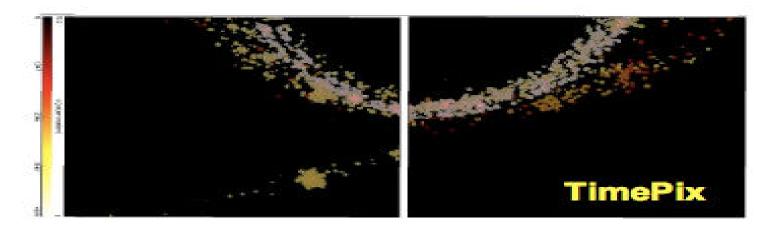


SOI Pixels Sensors Beam Tests at ALS

Test performance of novel SOI pixel sensors (LBNL, KEK, INFN Padova)


LDRD-SOI1 and LDRD-SOI2 successfully tested; Analog and binary pixels; First test of an SOI sensor on particle beam; Measured S/N > 15


Detector R&D Accomplishments - TRK


- Several collaborations formed
 - Silicon Tracker: SILC and SiD Si Tracker
 - LCTPC Collaboration formed with 38 institutions
 - LC TPC Collaboration performed many tests at KEK and DESY
 - 2007 2009: Tested field cage + 2 end plates (GEM + pixel and m-megas + Pixel configurations at DESY
 - Large bore 1.2T solenoid installed in DESY T24 as part of the EUDET facility installments

TPC Collaboration 2009 (38 institutions)

LCTPC Collaboration

Νον

High Field Large Bore Magnets

- One of the requirements brought up in IDTB07
 - Some candidates but no facilities had sufficient resources to pursue
 - FNAL pursued somewhat
- PCMAG
- Triumf (Twist) Magnet (Madhu Dixit)
 - -2 T, 1m ϕ , 2.2m length
 - Was available
- KeK (Amy) Magnet (Takeshi Matsuda)
 - -3 T, 2.4m ϕ , 1.6m length
 - Available now (in principle)
- ~3 T magnet from CERN?
- A new solenoid with a hole on the side for beam incident?

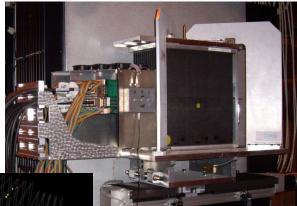
VTX+TRK Collaborative Facility

(HEPHY +Karlsruhe)

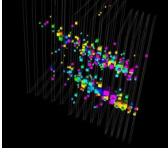
Test Si Envelope

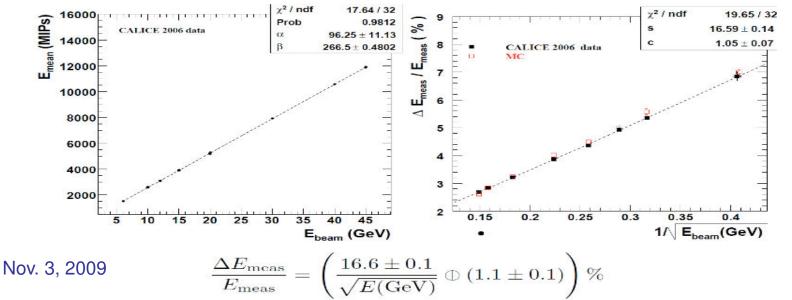
Large bore, high field magnet with Si tracker module on the beam position and large TPC inside the magnet

Mechanical support

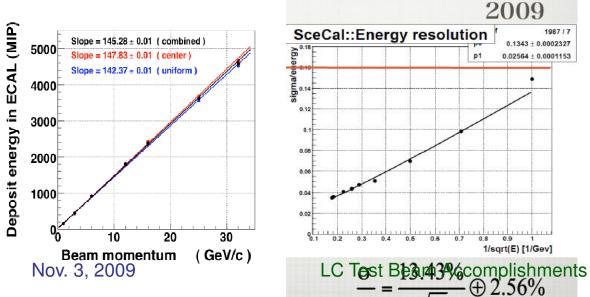

modules

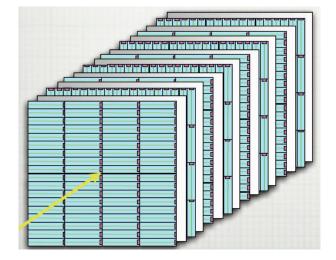
Detector R&D Accomplishments – CAL

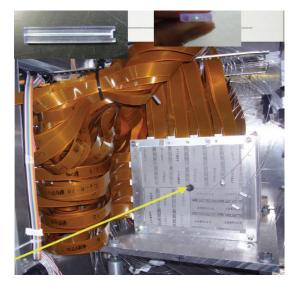

- CALICE
 - Performed combined Si/W ECAL + AHCAL + TCMT runs at CERN in 2006 and 2007 in addition to 2005 and 2006 DESY runs
 - Excellent opportunities for commissioning the system and performing high energy scans
 - Performed combined Si/W ECAL & Si/Scint+AHCAL+TCMT @ MTBF 2008 and 2009
 - RPC DHCAL slice test in 2007
 - Three GEM DHCAL prototype chamber tests in 2006 2007
 - Several GRPC single and multi-layers runs at CERN in 2007 2009
 - MicroMegas single layer testing @ CERN in 2008 2009


PFA ECAL: CALICE Si-W

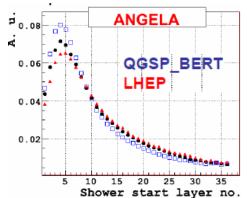
- Features Si active layer with fine readout cells (1x1cm²→0.5x0.5cm²)
- Tested at beams several times
 - At DESY 2005 and 2006
 - At CERN 2006 and 2007
 - At FNAL 2008
 - Standalone test + combined test with CALICE AHCAL
 - Analysis on-going
 - Comparison with MC simulation

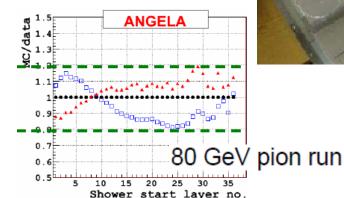

30

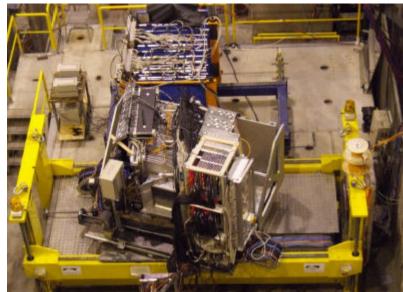


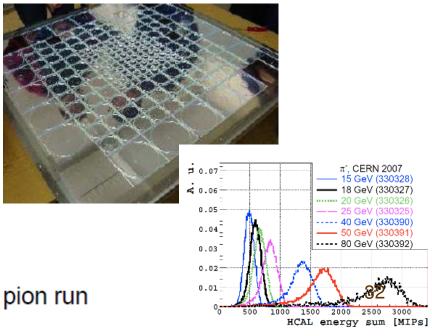

PFA ECAL: CALICE Scint/W ECAL

- Features 30 layers of planes with small scintillator strips (10x45x3mm³) readout by **MPP**
- Physics prototype constructed and tested
 - At DESY in 2007 and at FNAL in 2008 and 2009

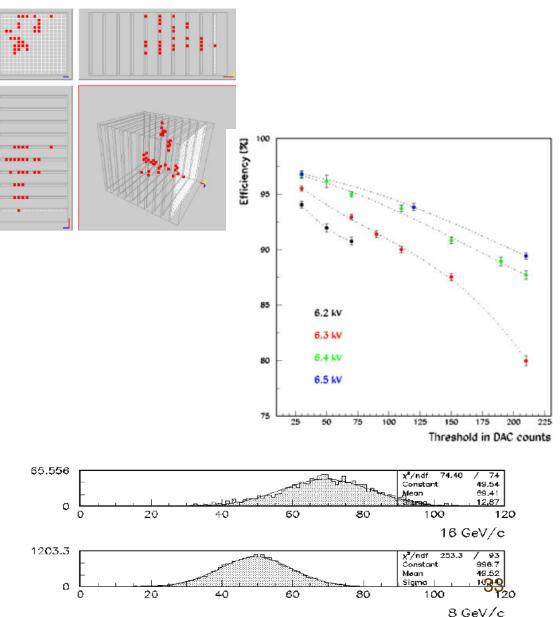


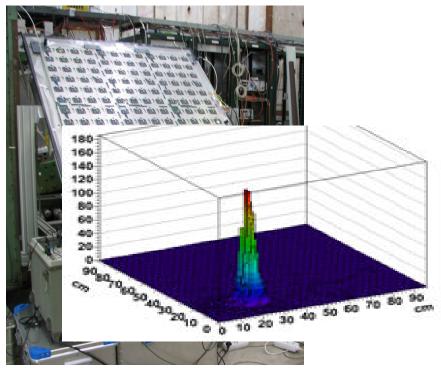

1987 / 7



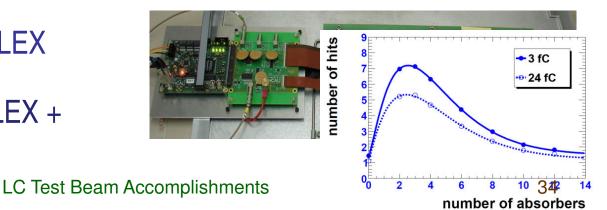

PFA HCAL: Scintillator AHCal

- Features 3x3cm² scintillator tiles and SiPM readout
- R&D well advanced: 1m³ physics prototype beam test done
 - Scint plane tests at DESY starting 2005
 - Commissioning run at CERN 2006 followed by a high energy run in 2007and FNAL in 2008
 - Standalone and combined with Si/W and Scint/W ECALs

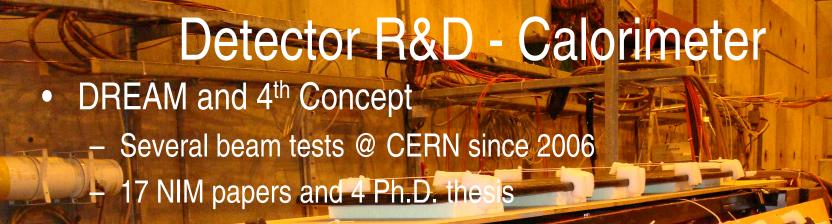



CALICE- RPC DHCAL Beam Test

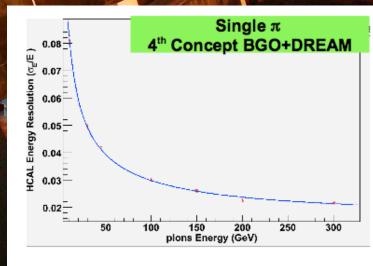
- Performed a slice test at MTBF in 2007
 - Beams of 1 16 GeV hadrons and electrons
 - 120 GeV protons
 - Muons
- Published 4 papers in JINST
- One Ph.D. thesis expected shortly
- Another in the pipe
- 1m³ run planned in 2010


CALICE - Glass RPC and µ-megas DHCAL

- 2 beam tests @ CERN using mini-DHCAL with small GRPC
 - Efficiency/multiplicity
 - Hadronic shower study
 - High rate tests with semi-conductive glass (1010 Ω.cm)
 - 1m² plane tests



µ-Megas


- 2008 with 4 GASSIPLEX chambers at CERN
- 2009 with 4 GASSIPLEX + absorbers

Nov. 3, 2009

Nov. 3, 2009

⊕1.2%

Detector R&D - Muons

- NIU+FNAL+WSU+UW team performed scintillation counter based muon system tests in 2007
- SiD Muon system performed a test on a few extruded scintillation counter strip prototypes in 2008 at MTBF
- New test on 284" strips using new electronics (TB4) with higher rate capability and double end readout being prepared
- But other teams seem to have become lower priority

Total of 12 CAL & Mu Projects in 2005

Calorimeter		Project	Lead institution	
1 3 2 ECAL 2		Silicon-Tungsten (CALICE)	LAL, LLR	
		Silicon-Tungsten (US)	SLAC, Oregon	
		Silicon-Tungsten (Asia)	Ehwa Univ., Korea	
		Scintillator-Tungsten	Shinshu	
		Scintillator-Tungsten	Colorado	
		Scintillator-Silicon-Tungsten	Kansas	
		Scintillator-Silicon-Lead	Padova	
	1	Scintillator-Steel AHCAL	DESY	
HCAL		RPC-Steel (CALICE)	ANL	
	3	GEM-Steel (CALICE)	UTA	
	1	Scintillator-Steel (CALICE)	NIU/DESY/FNAL	
Muon-detectors/tail catcher	2	Scintillator-Steel	FNAL/UCD/IU/NIU/ Notre Dame	
	3	RPC-Steel	Frascati	

Some activities merged and new activities arose since 2005!!

Nov. 3, 2009

Detector R&D Needs

Detectors	N_Groups	Particle Species	P (GeV)	Magnet (Tesla)	N_Weeks /yr	ILC time structure	Note
BI&MDI	2E+8ESA+1 F+2C+ <mark>3PC</mark>	e	up to 100	Not	64		Mostly low E elec
Vertex	Time to update this!!						
Tracker	3TPC+			75~6			
Cal*	5 ECALs+3 DHCALs + 5 AHCALs	e, n, π, K, p; μ	1 → 120	Not specified	30 - 60	Yes	
Muon/TC MT	3	ε , π, μ	1 → 120	Not specified	12		

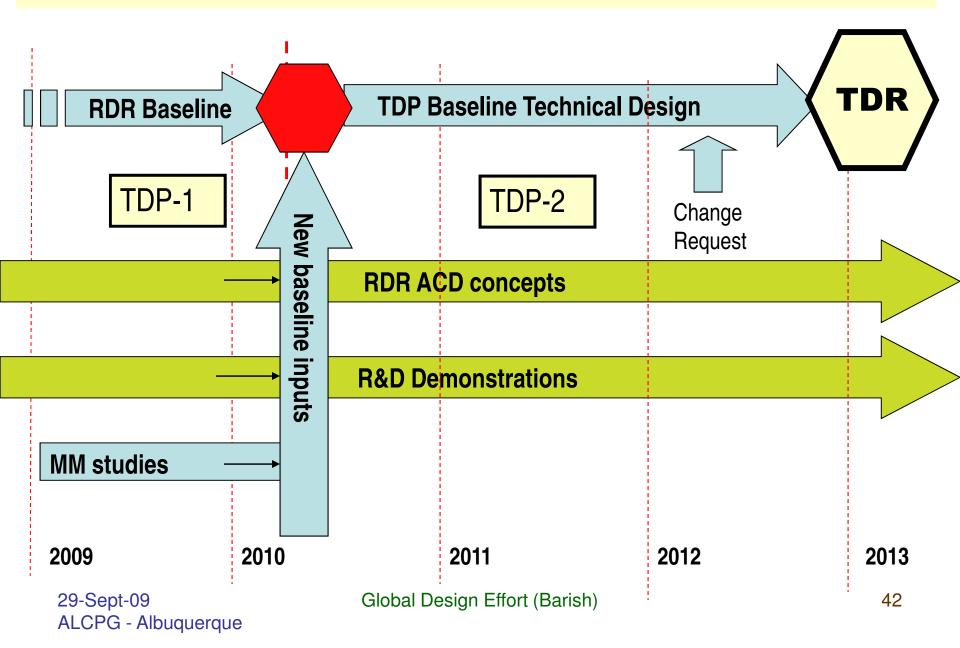
*Note: Most calorimeter R&D activities world-wide are organized under CALICE collaboration.

Some of these can work concurrently!

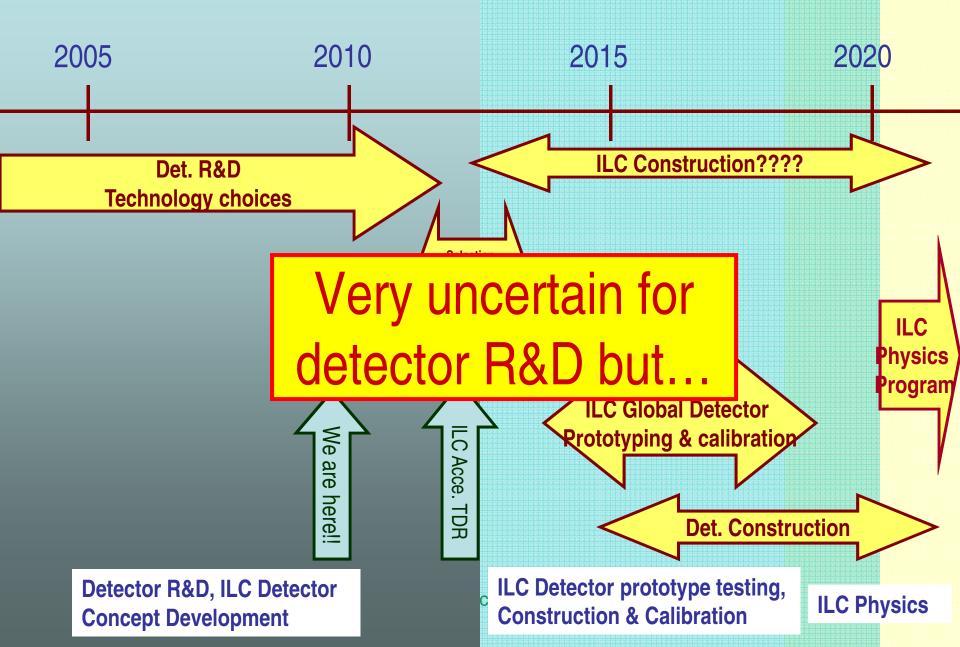
LC Test Beam Accomplishments

ILC TB Roadmap Document Score Card

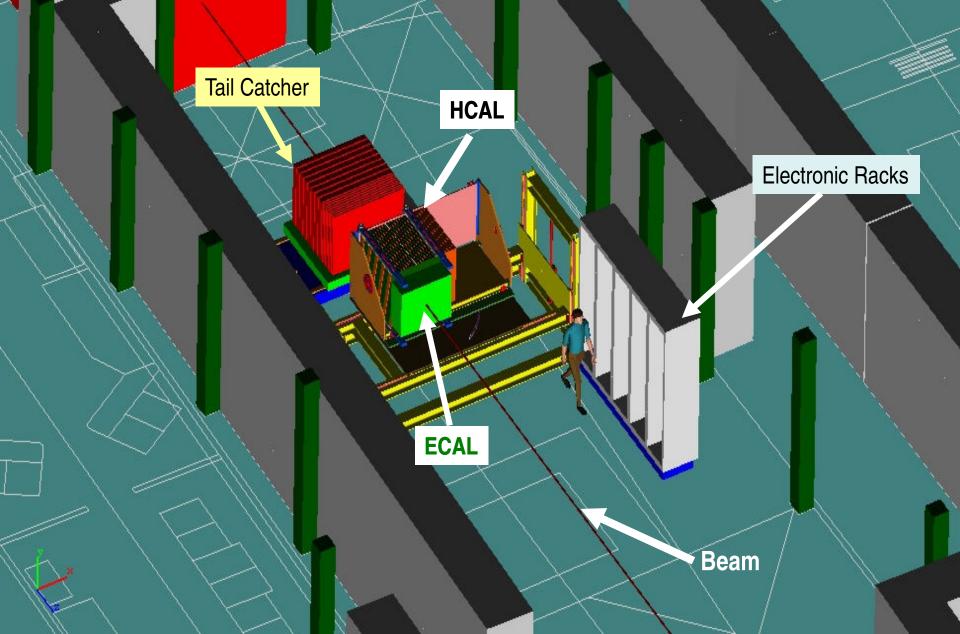
- Outcome of the 1st ILC TB Workshop at Fermilab
 - The document was released to the community, US funding agencies, facility managers and ILC leadership on Aug. 1, 2007
 - FNAL-TM-2392/KEK-Report-2007-3
- Recommendations
 - ✓ Urged to take actions on the loss of SLAC ESA
 - ✓ ILC-like beam time structure
 - Momentum Tagged neutral hadron beam
 - ☑ Trk-Vtx common beam test infrastructure w/ high field, large bore magnet
 - ☑ High test beam duty factor
 - ☑ Investigation into common DAQ hardware and software


Conclusions

- Facilities have made continued improvements to meet the ILC detector R&D needs and are still working on making additional improvements
 - Success of SLAC's ESTB proposal will provide additional facilities in low E beams with LC time structure
- Shutdown of two Asian facilities would put more stress on existing facilities
- A lot of beam test activities in all detector groups
 - Beam test results are being published
 - Many R&D groups formed collaborations to take advantage of common needs
 - LCTPC, FCAL, CALICE, SILC, LC detector concept groups, etc


Conclusions, cnt'd

- Groups are moving toward larger scale technical prototype testing
- Collaborations are considering combined testing
 - TPC + SILC + VTX, CALICE ECAL+HCAL+TCMT
- Different kind of needs arises at different times → Time for updates in beam test needs
- (I)LC's fate tightly coupled to the success of the LHC
- Times are hard and will not be easier but..
- Most these detector R&D and facilities upgrades are commonly usable for generic R&D
- Let's look ahead and keep making progress!!


GDE ILC Technical Design Phase and Beyond

Epilogue... LC Detector Time Line in 2009???

CALICE Setup V-Trial at FNAL MTBF - 2005

CALICE 2008

We are real now and will continue to be!!!

LC Test Beam Accomplishments