### CALICE HCAL'S & TCMT TB EXPERIENCES AND PLANS

LCTW Orsay Nov. 2009

M. Chefdeville, LAPP, Annecy

### HCAL concepts & Test beams

- Several HCAL concepts
  - AHCAL & TCMT
  - RPC DHCAL
  - GEM/GRPC/MICROMEGAS DHCAL "unit" chamber
- combined test physics prototype "unit" chamber
- Specific TB plans/needs however common story-line

| Standalone tests                                 |                   | Combined tests                                                          |                                           |
|--------------------------------------------------|-------------------|-------------------------------------------------------------------------|-------------------------------------------|
| Small chamber                                    | "Unit" chamber    | Physics proto.                                                          | Techno. proto.                            |
| Proof of principle<br>Efficiency<br>Multiplicity | Uniformity        | Shower profile<br>GEANT4 tests<br>PFA study                             | Module 0<br>Power-pulsing<br>ILC-like DAQ |
| Trigger devices ↓                                | Tracking system ♥ | Particle ID<br>≠ particle type<br>≠ particle energy<br>Crane<br>Magnet? | Time structure of the beam?               |

### Outline of the talk

GEM DHCAL

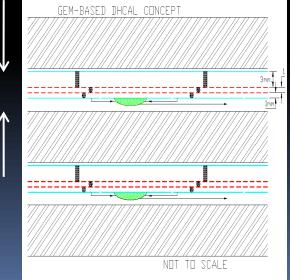
GRPC sDHCAL

MICROMEGAS sDHCAL

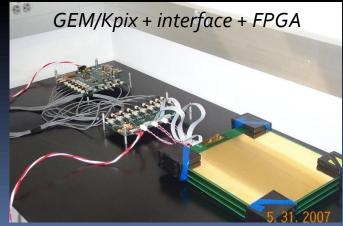
RPC DHCAL

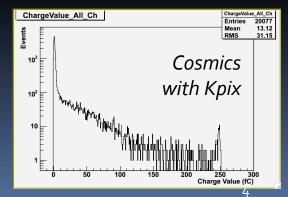
AHCAL & TCMT

Available prototypes


Testbeam status
 Experience & feedback

Testbeam plans (4) coming years
 Wish list

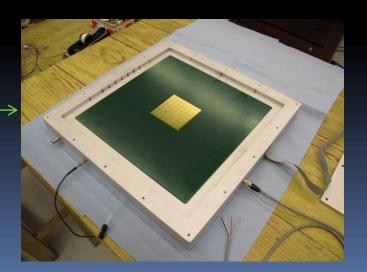

### (double)GEM DHCAL status


- Gas Electron Multiplier
  - Rate, ageing, stable, 2kV, stackable, high gain, Ar/CO2
- Tested prototype
  - 30x30 cm<sup>2</sup> with QPAo2 electronics
  - Recent bench test with Kpix

- Test beams
  - High flux e- beam chamber survived
  - 8 & 120 GeV protons at FNAL/MTBF response/eff./gains



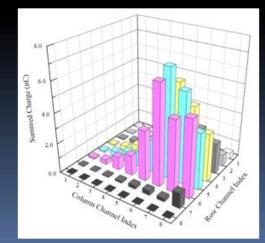
6.5 mm






### GEM DHCAL plans for end 2009

#### **Prototypes**


- 30x30 cm<sup>2</sup> chamber → Characterization
  - Improved gas flow design
  - 64 pads & Kpix readout
- Unit chamber
  - Single GEM foil: 33x100 cm<sup>2</sup>
  - Send design to CERN workshop

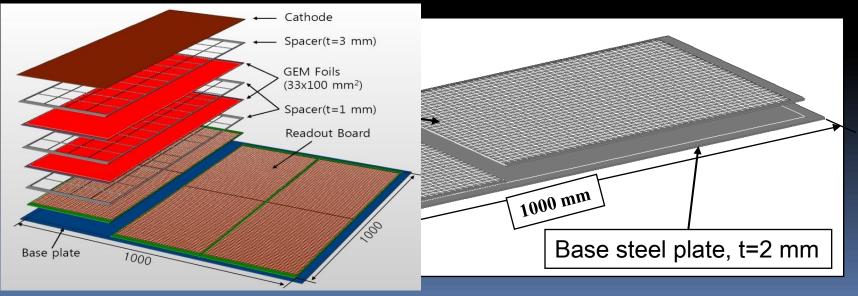


#### **Test beams**

Response, efficiency, multiplicity, uniformity ....

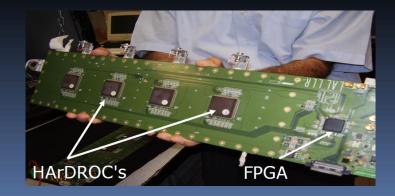
#### 55Fe charge signal on pads

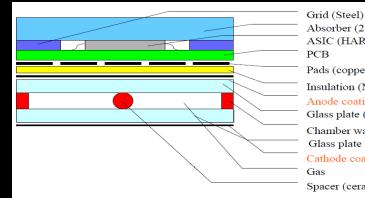


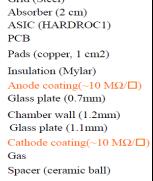

### GEM DHCAL plans 2010...

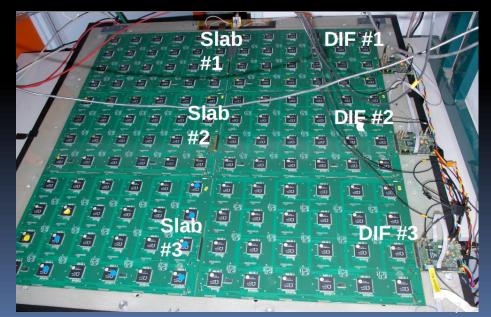
#### **Next steps**

- Production/certification 33x100 cm<sup>2</sup> foils
- Characterisation of Kpix chips
- Start using DCAL chips
- Construction of Unit chambers with Kpix & DCAL


#### Test beam plans


- Mid 2010-late 2011
  - I5 Unit chambers with DCAL
  - 1 with TGEM or RETGEM
- Test in existing CALICE stack (see AHCAL) of 5 DHCAL planes





### Glass-RPC semi-DHCAL status

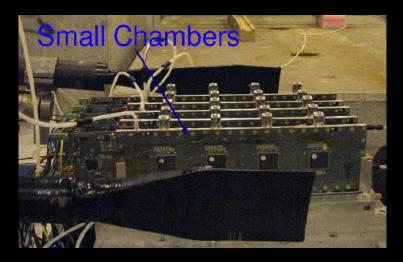
- Resistive Plate Chambers
  - Large signals
     Well-suited for large area
  - Rate effects, 8 kV
- Prototypes
  - 1.2 mm of gas, 1 cm<sup>2</sup> pads
  - HARDROC readout
    - 64 channels, 2-3 thresholds
  - DIF + Xdaq framework
  - 4 HR boards, 8x32 cm<sup>2</sup>
  - 1 m<sup>2</sup> with 6 boards of 24 HR

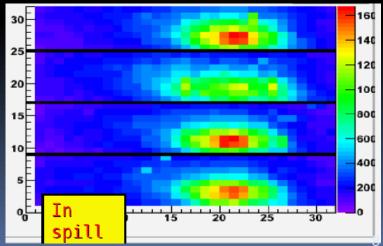









### Performed tests in 2009 (I)


#### 2 Test beams at CERN PS & SPS

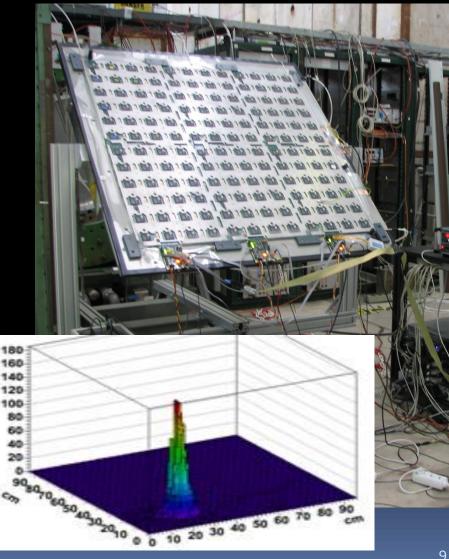
- Mini-DHCAL with small GRPC
  - Efficiency/multiplicity
  - Hadronic shower study
  - High rate tests with semi-conductive glass (10<sup>10</sup> Ω.cm)

- Im2 prototype
  - Readout electronics tests
  - Detector response

 Beam test setup: mainly scintillators






### Performed tests in 2009 (II)

#### 2 Test beams at CERN PS & SPS

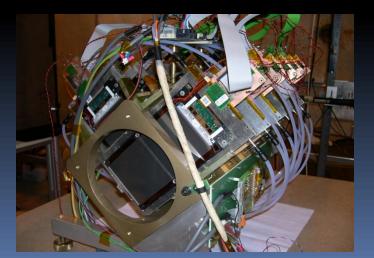
- Mini-DHCAL with small GRPC
  - Efficiency/multiplicity
  - Hadronic shower study
  - High rate tests with semi-conductive glass (10<sup>10</sup>  $\Omega$ .cm)

- 1m<sup>2</sup> prototype
  - Readout electronics tests
  - Detector response

Test beam setup: mainly scintillators



### Program for next year


#### Electronic boards for 3 prototypes of 1m<sup>2</sup> mid. 2010

- Test different kinds of resistive coating GRPCs
   Graphite, Statguard, Licron
   pad multiplicity study
- Test Multi-Gap GRPC developed by CERN-Bologna group
  - Compare with Single-Gap GRPC

 Study the hadronic shower extension with o-4 λ<sub>i</sub> in front

#### Local efficiency study

- Use of CMS tracker telescope in collaboration with CMS people
  - Edges, spacers zone, inlet/outlet gas, H.V connections area...

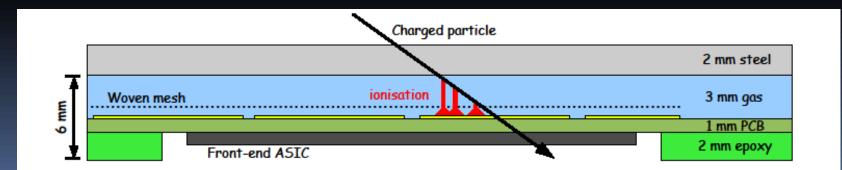


### Scheme of the TB with CMS-Telescope GRPC 12 layers of 10x10 cm<sup>2</sup> Si strips 6X+6Y, 30 μm resolution/layer Beam **CMS** -Telescope absorbers

Simple case of PFA study can be achieved at low cost by combining existing/future calorimeters with existing tracker telescope

More advanced PFA study needs more sophisticated setup. Complete PFA test on "pseudo-jet" remains very difficult.

A combined, modular test is not a new idea but it becomes now necessary to validate concepts and options.


### MICROMEGAS (semi-)DHCAL

#### Micro Mesh Gaseous Structure

- Rate, ageing, spark-proof, fast, robust, standard gas, 500 V, large area (RD51), low pad multiplicity, high gains in prop. mode
- Small avalanche charge w.r.t. RPCs

#### Prototypes

- 3mm gas, 1cm<sup>2</sup> pads
- GASSIPLEX readout analog electronics "outside"
- Active Sensor Unit digital embedded electronics
  - HARDROC or DIRAC ASICs (64 ch.)
  - DIF, USB DAQ with Xdaq or LabView



#### Test beams @ CERN PS & SPS

- Aug + Nov 2008
   4 GASSIPLEX chambers
   1 DIRAC
- May-June 2009
   4 GASSIPLEX + absorbers
   4 HARDROC (4HR1)
- Sep + Nov 2009

   4 DIRAC
   1-4 HARDROC (24 HR2)




#### Test beams @ CERN PS & SPS

- Aug + Nov 2008
   4 GASSIPLEX chambers 1 DIRAC
- May-June 2009
   4 GASSIPLEX + absorbers
   4 HARDROC (4HR1)
- Sep + Nov 2009

   4 DIRAC
   1-4 HARDROC (24 HR2)

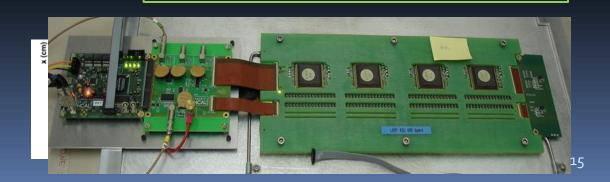
- In a few days
  - 400.10<sup>3</sup> Pions & Muons @ 200 GeV
  - 250.10<sup>3</sup> Pions with Fe block
  - 200.10<sup>3</sup> Pions @ 7 GeV
- Complete characterisation
  - Efficiency, multiplicity, uniformity, MIP response
     Accepted for publication in JINST
- Simple test setup with 2 scintillators



#### Test beams @ CERN PS & SPS

Aug + Nov 2008
 4 GASSIPLEX chambers
 1 DIRAC

May-June 2009


**4 GASSIPLEX + absorbers** 

- a structure of absorbers
- Electron & hadron showers
  - Momentum up to 6 GeV/c
  - Hit & energy profile
  - Chamber behaviour in showers
- Efficiency and multiplicity of HR1

Sep + Nov 2009

 4 DIRAC
 1-4 HARDROC (24 HR2)

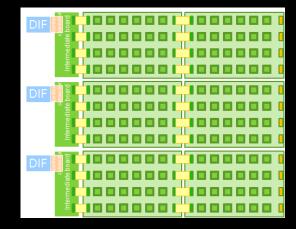
4 HARDROC (4HR1)



#### Test beams @ CERN PS & SPS

- Aug + Nov 2008
   4 GASSIPLEX chambers
   1 DIRAC
- May-June 2009
   4 GASSIPLEX + absorbers
   4 HARDROC (4HR1)
- Sep + Nov 2009
   4 DIRAC
   1-4 HARDROC (24 HR2)



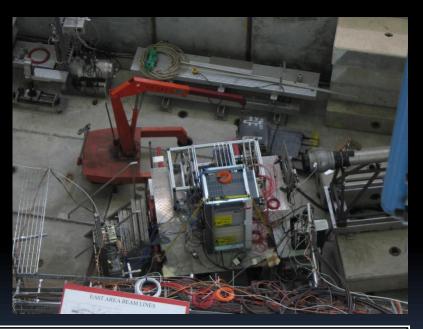

- Choice between HR & DIRAC to be made soon
  - Compare efficiency/multiplicity

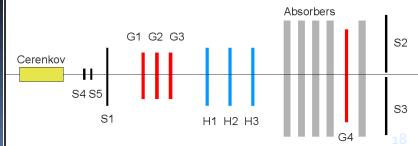
- Already have 4 ASU 24 HR2
  - Test individual ASU in beam or with 55Fe
  - Assembly of 1 m<sup>2</sup>

### Next test beam plans

#### Beginning 2010

- Assembly of 4 ASU 24 HR2 inside 1 m2 (mechanical proto. already validated)
- Test beam as soon as beam available
  - Rotating supporting structure tilted tracks
  - Precise tracking (σ~1 mm) would be interesting to check response close to dead areas





- Production in 2010
  - Q2: electronics & mechanics
  - Q3: Assembly
  - Q4: A few planes
     (Production profile should fit financial profile)
- Future beam test with absorbers 2011-201...
  - Within EU DHCAL 1m<sup>3</sup> SS structure
  - Within W structure (see last slide)



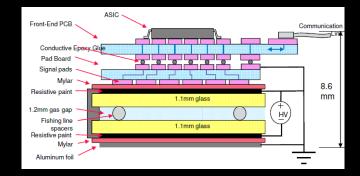
### Our experience working at CERN

- Goods:
  - LAPP (Annecy) proximity to CERN makes transport easy and fast
  - Fast installation
     20 tons crane, very efficient people
     Using isobutane manageable
  - Appreciated infrastructure Tutorial for tuning beam parameters Cerenkov & Scint. & MWPCs 2x2m<sup>2</sup> XY table (1 ton weight) HARP magnet on PS/T9
  - Machine experts do their best to satisfy user needs (number of spill/cycle)
  - Parasitic runs
- Bads: machine unstability





### RPC DHCAL


#### Sampling calorimeter

- 2 cm thick steel plates
- 1.2 mm gas (Fr:iso:SF6), 1 cm<sup>2</sup> pads
- DCAL chip (single bit/pad)

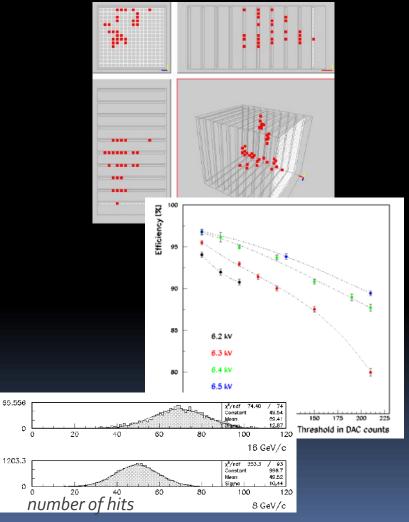
#### Small scale HCAL

- 10 RPCs of 20x20 cm<sup>2</sup>
- ~ 2560 channels
- 1.6 cm Fe + 0.4 m Cu plates
- Extensive studies published in JINST

- Physics prototype of 1m<sup>3</sup>
  - 40 planes of 1m<sup>2</sup> with 3 RPC each
  - ~ 400 000 channels
  - Construction initiated fall 2008





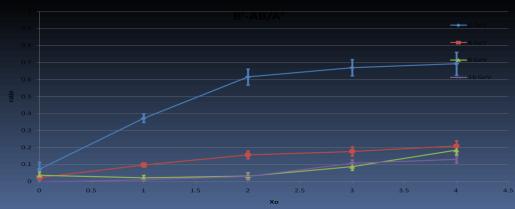

### RPC DHCAL beam test status

#### **Beam test of small HCAL**

- So-called Vertical Slice Test
- Performed @ Fermilab on MT6 line
  - Broadband muons
  - I20 GeV protons
  - 1-16 GeV secondaries (e+,π+)

#### Completed measurements

- Calibration with muons
  - Efficiency, multiplicity
- Positron showers
- Rate capability with protons
- Hadron showers




# Experiences and challenges with Glass-RPCs

#### With rates > 100 Hz/cm<sup>2</sup> drop of efficiency

- MTBF successfully reduced rates < 100 Hz/cm<sup>2</sup>
- Analysis of positron/pion date show evidence of rate problems, despite low beam intensity
- → suspicion of sizable flux of (asynchrounous) photons in beam line
- Measurement with a pair of scintillators and absorber plates
  - → confirmation of suspicion at least for the 2 and 4 GeV setting

Plan: will return to MTBF on Nov 24 and 25 and remeasure



### Physics proto. test plans

- Currently constructing the 1m<sup>3</sup> prototype
  - Expect to finish by Spring 2010
  - Re-use CALICE AHCal absorber structure
- Purpose
  - Validate DHCAL concept
  - Gain experience running large RPC system
  - Measure hadronic showers in great detail
     Validate hadronic shower models



#### Beam test plans

- Feb 2010: layer test planned
- Spring 2010: stand alone with TCMT
- Followed by combined test with CALICE ECAL+TCMT
- Test with muon, electron, pion and proton



### Tail Catcher Muon Tracker status

#### Mechanical structure

- "Fine" section: 8 layers of 2 cm SS
- "Coarse" section: 8 layers of 10 cm SS
- 16 cassettes
  - Extruded Sc. Strips
  - WLS fibers + SiPMs
  - CALICE DAQ



#### 2008TB setup at MT6



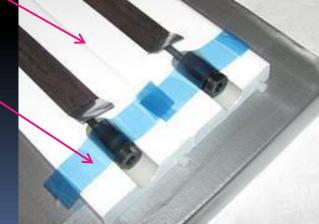
#### Test beam

- Part of CALICE AHCAL TB setup
- Quick run with a few strips efficiency attenuation along strips

### TCMT future TB plans

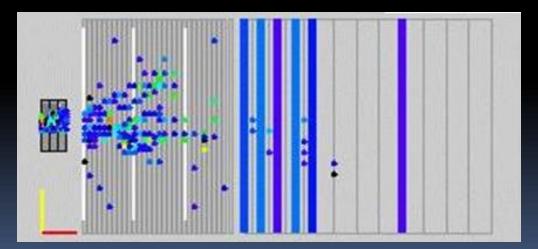
#### Performed measurements with

- More channels
- Much longer strips (284 inches)
- Double ended readout

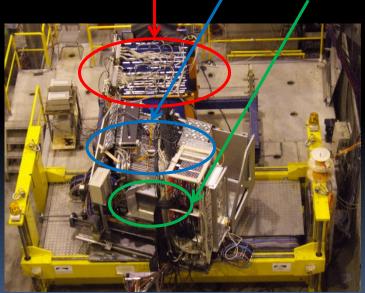

#### Investigations

- Losses in the crack between adjacent strips
- Losses in scint. behind SiPM

#### Use of a tracking system


- Heterogeneous system
   Increased number of channels
- Very good position resolution without hurting rate
   Very good two track rejection
   Powerful tool that can be used in future studies
  - e.g. testing of dual readout crystals



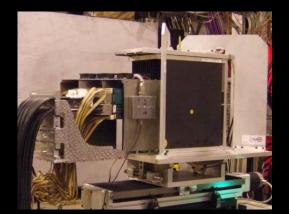



### Scintillator Analog HCAL

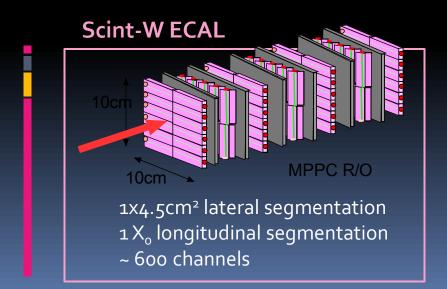
- R&D well advanced: 1m<sup>3</sup> physics prototype beam test done
  - Standalone test and combined test with CALICE ECAL(s) & TCMT
  - A lof of data collected, analysis on-going
  - First comparison with MC simulation



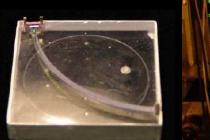
Online event display of 10GeV pion n Si-W ECAL+ AHCAL+TCMT

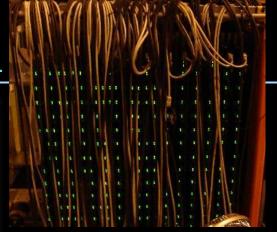



TCMT


**AHCAL** 

**Si-WECAL** 


## Test beam prototypes




1x1cm<sup>2</sup> lateral segmentation 1X<sub>o</sub> longitudinal segmentation ~10000 channels



#### Sc. tiles – SS HCAL



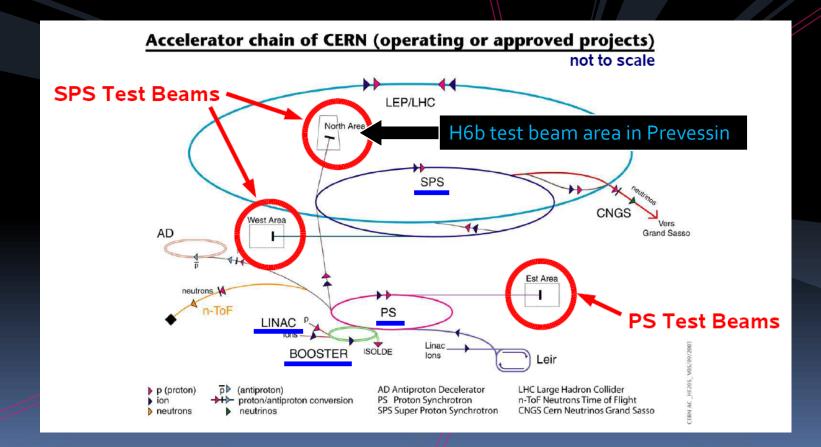


 $_{3x3}$  cm<sup>2</sup> with SiPM,  $_{38}$  layers,  $_{4.5}$   $\lambda$ ,  $_{8000}$  channels

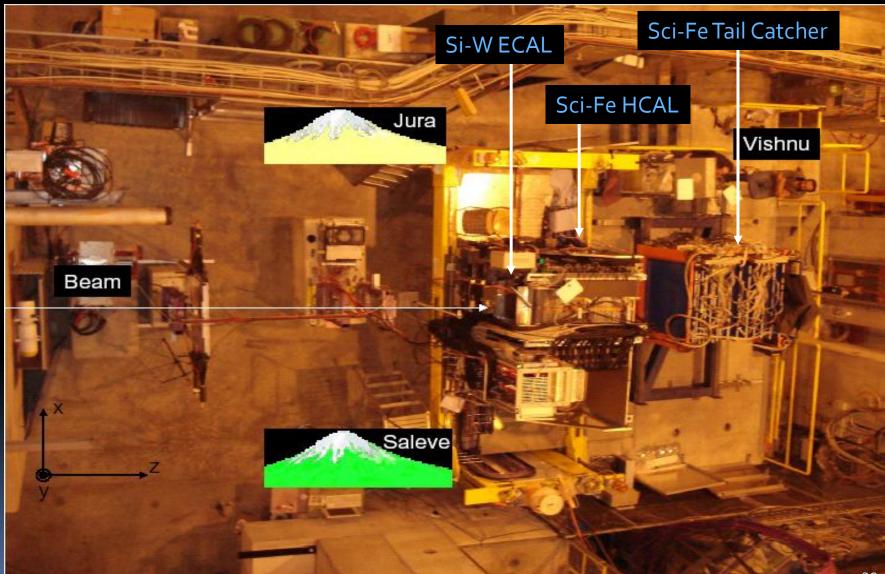
#### Scint. Strips-Fe TCMT



16 layers, 5x100cm<sup>2</sup> strips, ~5  $\lambda$  300 channels, SiPM readout

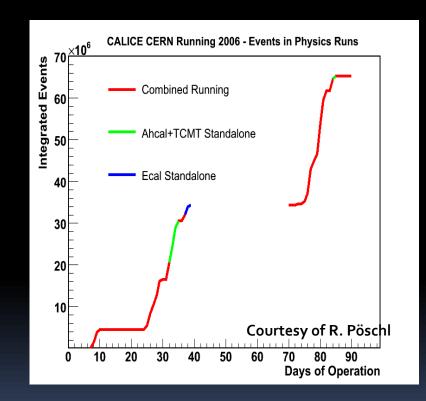

### CALICE test beam campaigns

- Major test campaigns @ CERN 2006-07 & FNAL 2008-09 with 2 major detector configurations:
  - Si-W ECAL+ AHCAL + TCMT
    - Aug. & Oct 2006
       @ CERN
    - Jul. & Oct. 2007
       @ CERN
    - May & July 2008
       @ FNAL
  - Scint-W ECAL + AHCAL + TCMT
    - Sep. 2008 & May 2009 @ FNAL

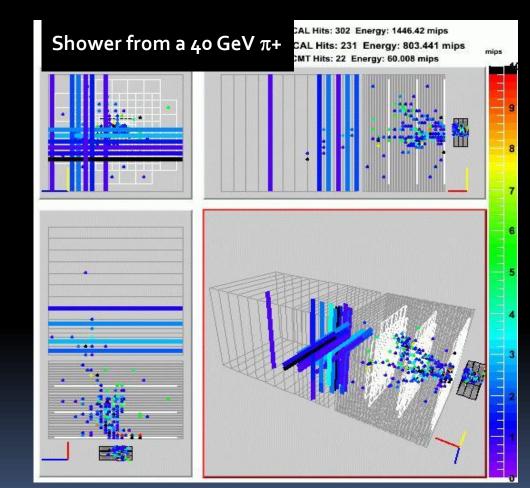

- Goal of the prototype calorimeters:
  - establish the technology
  - collect hadronic showers data with unprecedented granularity to:
    - tune reco. Algorithms
    - validate MC models

### Year '06 CALICE moves to CERN

"...end of June 'o6 the CALICE collaboration is packing up 3 calorimeter prototypes from DESY (D) and NIU (US). Destination: Geneva. Expected duration of the mission: 4 months. "




### after 2 weeks of installation in H6B




### Impressive data rate at CERN

Limited by our DAQ + rate limit due to radiation limit for the detector



The physics is there → Now starts the fun !!



### Year '08 installation at FNAL



#### Flying the CALICE stage into the MTBF-M6 area



the CALICE installation with Si-W ECAL + AHCAL + TCMT



### World-wide

(3) (A Webber //cal

CALI CO Secure Global Desktop

Using Your Webtop

Using your webtop


· Using the classic webtop Reference Working with profile:

Sven Karstensen Tutorials

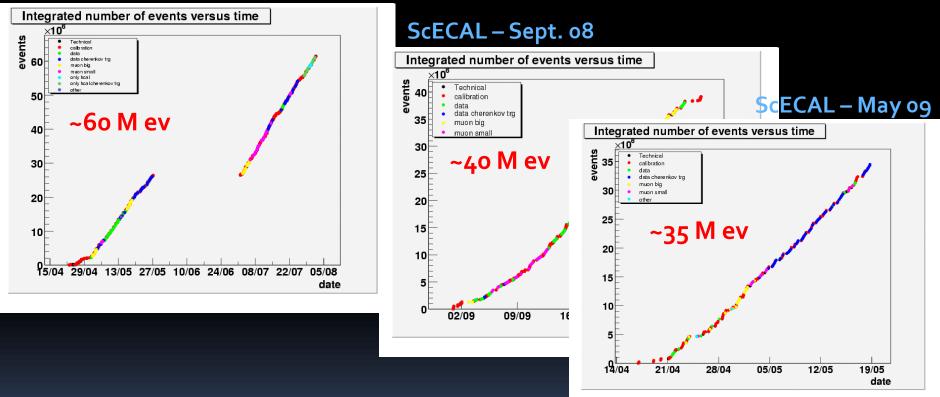
Established use of sophisticated system

for remote control of detector & online monitor from around the globe

Thank you FNAL for making it possible!



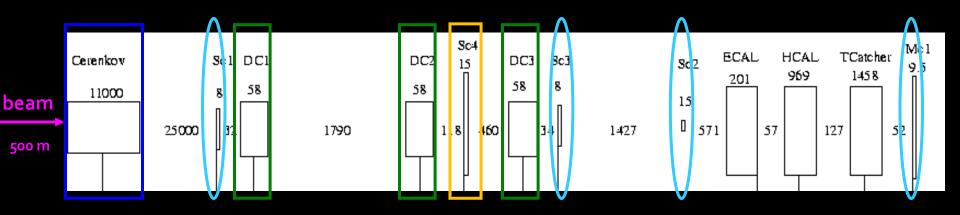







### Data taking at FNAL

#### Limited by beam rate


#### SiECAL – May+ July o8



Smooth data taking after initial commissioning phase ~60 M events collected with Si-W ECAL + AHCAL (same as at CERN 07) ~75 M events with Sc-W ECAL + AHCAL (first time tested)

### The setup in the beam

...much more than "just" 3 calorimeters



- Steps towards a clean data sample
- 1. Optimize beam  $\rightarrow$  tune magnets, collimators, secondary trg, abs
  - → Beam parameters stored in data stream difficult due to often broken communication
- 2. Separate  $e/\pi \rightarrow$  Cherenkov detector (for  $E_{beam} < 40 \text{ GeV}$ )
  - → Ideally also separate protons and kaons (not possible on H6)
- 3. Identify beam impact point on ECAL  $\rightarrow$  3 x/y pairs of MWPC with double readout
  - CERN chambers used, prove to be not precise enough and very unstable, FNAL offered no tracking system
- 4. Tag multi-particle events → amplitude r/o of 1cm thick scint. counter (veto)
- 5. Trigger physics with high efficiency → trigger system
   → Veto and trigger system self-provided could be improved or made permanent

### Wish list

More reliable connection to beam parameters data base

#### Reliable, well documented beam instrumentation:

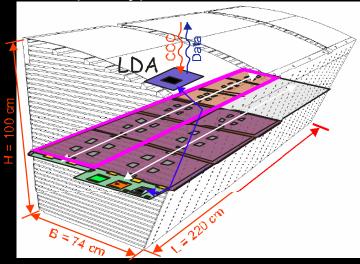
- High precision tracking system
- Dedicated high speed triggering system with veto walls
- Differential Cerenkov detectors for pi/p/K/e separation over large E range

More documentation on usage of beam instrumentation

i.e. Cerenkov pressure curves vs energy

More info on muon energy spectrum/multiplicity (requires simulation of beamline)

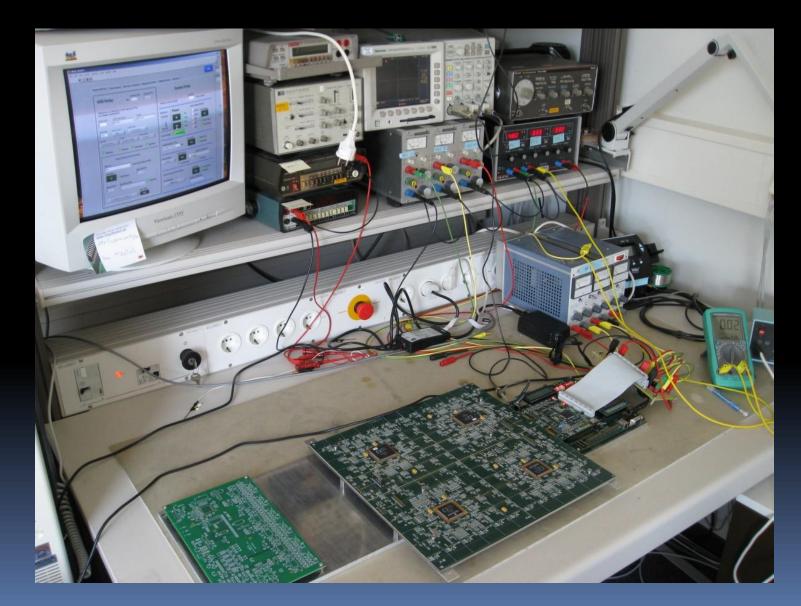
#### High hadron rate at low energy:


> 5 Hz @ 1-6 GeV (FNAL achieved rates)
 G4 model of beam line and instrumentation
 High duty cycle
 Large bore magnet

### AHCAL EUDET module

#### Future technical prototype

- Instrumented with HCAL Base Unit (HBU)
- ILD-like mechanics, realistic to test novel readout techniques


#### Future prototype architecture



- EUDET deliverables
  - HCAL mechanical structure
  - HCAL calibration system
  - HCAL readout integrated electronics



### Prototype system commissioning



 Full system integration (electronics + mechanics) incorporating tiles and SiPMs from first user is ongoing

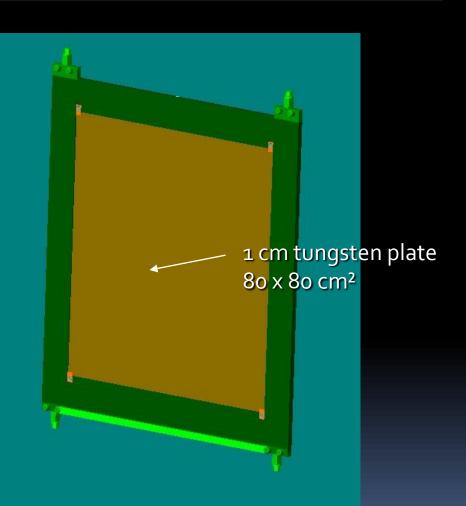
- First prototype is being assembled and tested. All components delivered:
  - CALIB and POWER modules:
  - Calibration multi-channel prototype:
  - Mechanical structure:

available both options available available

Outlook: AHCAL integration prototype to DESY test beam in 11/09

### Future HCAL project




- Mechanical structure assembled together with ECAL for test beam experiment - Test in magnetic filed also under discussion

### Future prototype: 2012...

#### CERN, DESY, LAPP

 W-based calorimeter with scintillators or MICROMEGAS sensors for CLIC

- Keep detectors but change mechanical structure:
  - Use of 1 m2 detector planes
  - Structure with W 80x80 cm2 and Al frame



### Conclusion

Several HCAL prototypes developed

- Several TBs in the past good progress on the different concepts
- More TBs to come

#### Individual needs for infrastructure are different

- Should, however, merge in the future
- Important to share experience and define common requests

# Thanks for your attention

Special thanks to Vincent, Erika, Felix, Frank, Jae, Imad & Jose who provided me with some slides