TPC Testbeam Software

Martin Killenberg

Physikalisches Institut universitätbonn

LCTW 2009 Orsay, 04.11.2009

・ロン ・四 と ・ ヨ と ・ ヨ と …

2

Pad Layouts in GEAR

-		
	 RectangularPadRowLayout Cartesian Geometry All pads in one row are equal Pad size and number of pads may vary from row to row 	
	 FixedPadSizeDiskLayout Polar Geometry Complete circle All pads have the same size 	
	 New: FixedPadAngleDiskLayout Polar Geometry Segment of a circle All pads have the same angle 	
	 New: VersatileDiskRowLayout Polar Geometry Segment of a circle All pads in one row are equal Pad size and number of pads may vary from row to row 	¢ bonn

Multiple Modules in GEAR

A realistic TPC end plate (EUDET LP) consists of multiple modules \Rightarrow introduce TPCModule in GEAR

 $\mathsf{TPCModule}$

- derived from PadRowLayout2D
- contains a pad layout implementation
- $\Rightarrow\,$ full backward compatibility and transparency in user code

Coordinates:

- Pad plane implementation provides local coordinates
- Module has offset and angle to global coordinate system
- Accessing the pad plane through the module automatically provides correct global coordinates

global Cartesian coordinates

global polar coordinates

Status last year:

• Chain is ready for non-modular version, but only tested with toy MC

Requirements for LP test beam:

- Multiple modules
 - Include gear multiple modules in processors (\checkmark)
 - Add ModuleID to conditions data classes (e. g. pedestals) (\checkmark)
 - Alignment (✓)
- Data taking with magnetic field
 - Helical track fit $(\checkmark)^1$
- Calibration (\times)
 - Toy MC does not need calibration
 - Has to be developed with real data

¹only simple fit without correct treatment of covariance matrix \leftarrow \Box

Alignment

Alignment is possible:

- Calculate offsets manually
- Hard-code offsets in GEAR XML files

Goal: Apply alignment at run time using LCCD

- Should be transparent to existing reconstruction code
- Independency on pad plane implementation should not be broken
- \Rightarrow Keep the PadRowLayout2D interface

How to implement it?

- Store calibrated XML files in database?
- Extend functionality of TPCModule?
- Write a wrapper class?
 - Inherit from TPCModule?
 - Have an instance of TPCModule?

- Linear Collider Conditions Data toolkit
- $\bullet\,$ TPCCondData: LCIO / LCCD classes for the TPC

Data needed	TPCC	ondData		Available for test beam run											
				Japane	ese	GEM		Micro-	St	Std. GEM			Timepix		
			4	ALTRC)	TDC		megas				+ GEM			
Channel mapping		\checkmark		\checkmark		\checkmark		 ✓ 		\checkmark					
Channel quality		\checkmark		×		×		×		×			×		
Pedestals		\checkmark		×		×		×		×			×		
v_{drift} + Diffusion		\checkmark		×		×		×		×			×		
Gas conditions		✓		\checkmark		\checkmark		 ✓ 		\checkmark			\checkmark		
E-field settings		√		×		×		×		×			×		
B-field settings		\times													
HV settings		\times													
Field maps		\checkmark						\times							
Electronics		\times													
Calibration		×													

- Linear Collider Conditions Data toolkit
- $\bullet\,$ TPCCondData: LCIO / LCCD classes for the TPC

Data needed	TPCCondData			Available for test beam run											
			Japanese GEM					Micro-		Std. GEM		Timepix			
			ALTRO TDC					megas					+ GEM		
Channel mapping		(\checkmark		\checkmark		\checkmark		\checkmark					
Channel quality	~	(×		×		×		×			×		
Pedestals	~	(×		×		×		×			×		
v_{drift} + Diffusion	~	(×		×		×		×			×		
Gas conditions	~	<mark>/ </mark>		\checkmark		\checkmark		\checkmark		\checkmark			\checkmark		
E-field settings	~	<mark>/ </mark>		×		×		×		×			×		
B-field settings		×													
HV settings		×		_ v	Ne	have to	ר ס	et a w	oking	data	hase	• ai	nd		
Field maps	~	(conditions data bookkeeping												
Electronics		×													
Calibration		×													

Two types of conditions data:

Calibration data

- Pedestals, mappings, gain factors
- Collections / maps of many identical objects
- Possibly large amount of data
- Usually no DB access to individual data members
- ⇒ Store as binary objects Current functionality of LCCD
- Meta data
 - · Gas mixture, beam energy, particle type, position of detector
 - No collection, indvidual data objects
 - Only few integer / float (/ string?) values
 - $\bullet\,$ Query DB to search for runs / data sets
 - \Rightarrow Store data members directly in DB table

Event Display

For development of geometry descriptions and fist checks during data taking a graphical viewer is needed.

 $\label{eq:hepRepOutputProcessor produces HepRep XML file which can be displayed e. g. with Wired/JAS3$

Event display shows

- TPC
- GEAR pad plane
- Charge on pads
- 3D hits
- Tracks

Disadvantages

- MarlinProcessor is offline software
- Events not browsable
- Graphical display has errors (depth)
- Very bad performance

9

Conclusions

- GEAR
 - New pad layout classes for existing prototypes
 - Multiple modules incl. coordinate transformations
 - Implement allignment from conditions data
- MarlinTPC
 - All reconstruction processors are multi module capable
 - Performance has to be improved
 - Develop calibration tools with real data
 - EventDisplay: HepRepOutputProcessor + Wired/JAS3
- Conditions data
 - Define missing data classes for calibration
 - Set up a data base
 - Queryable conditions data

