Tracking Simulation & Reconstruction

Norman A. Graf (including work by Jeremy McCormick) March 31, 2006

Geant4: MCS Fix ²

- Geant4 versions prior to version 8 had ~30% variation in energy deposition in thin layers depending on the production cut for secondaries.
- The version 8 stepping model changed this.
- Now a series of steps of decreasing size is taken as the particle approaches a volume boundary.
 - Seemed to fix or at least drastically reduce problems with varying energy deposition.
- It may have also introduced bugs / problems ...
- Number of steps per layer seems to scale

 e.g. 40-50 micron steps in tracker layer and 4-5 micron steps in vertex layer

SLIC: SimTrackerHit Updates ³

- Momentum added to SimTrackerHit
 - For single step, current particle momentum.
 - For multiple steps, average of particle momenta.
 - Implemented in org.lcsim interface / implementation and Event Browser.
- Path length added to SimTrackerHit
 - For single step, distance from pre to post step point
 - For multiple steps, distance from entry to exit point
 - Or in case of interaction, multiple tracks are produced, so it is start of new track to exit point
 - Also implemented in org.lcsim
- Entry and exit point from path length and momentum
 - Not yet in org.lcsim interfaces (but trivial)
- Released with LCIO version 1.7 (Cambridge)

LCSim Event

Run:0 Event: 0

🗂 Event		Collection: TkrBarrHits size:377 flags:c0000000												
EcalBarrHits		id: syst	id: layer	id: barr	x (mm)	y (mm)	z (mm)	dEdx (GeV)	time (ns)	px (GeV)	py (GeV)	pz (GeV)	pathLength (mm))
		13	3	0	-516.62	-819.72	866.59	1.0882E-4	8.0703	3.5049E-4	-6.4218E-5	0010064	.13482	1
EcalEndcapHils		13	4	0	-517.28	-819.35	862.99	1.5041E-4	10.507	-6.3473E-5	-1.9939E-4	-1.7364E-5	.098904	ł
– 🗋 ForwardEcalEndca		13	4	0	-215.77	-1205.8	1423.8	9.2928E-5	8.2888	5.6848E-5	2.1151E-4	-2.3349E-4	.18280	1 =
— 🗋 HcalBarrHits		13	0	0	-202.07	2.4258	-18.814	8.4814E-5	9.5180	-11.697	.29396	-1.0905	.30133	4
- 🗋 HealEndeanHits		13	1	0	-457.90	13.054	-42.673	1.6052E-4	1.5360	-11.680	.67765	-1.0907	.30143	1
		13	2	0	-712.37	32.008	-66.471	8.7739E-5	2.3916	-11.652	1.0592	-1.0902	.30161	
		13	3	0	-967.26	59.408	-90.353	8.7814E-5	3.2513	-11.610	1.4406	-1.0911	.30188	i -
— 🗋 MCParticle		13	4	0	-1221.4	95.182	-114.29	1.0079E-4	4.1118	-11.556	1.8205	-1.0914	.30223	i -
- 🗋 MCParticleEndPoin		13	0	0	-201.74	-11.778	-62.498	1.2659E-4	100.66	-1.5041	23680	47600	.31585	i –
- 🗋 MuonBarrHits		13	1	0	-450.28	-84.197	-143.62	9.6445E-5	1.6173	-1.3959	60743	47540	.32244	Į.
		13	2	0	-677.93	-221.13	-226.98	9.0348E-5	2.5505	-1.1889	94994	47503	.33569	i –
		13	3	0	-870.86	-425.13	-314.66	1.6222E-4	3.5367	88361	-1.2387	47394	.35747	7
— 🗋 TkrBarrHits		13	4	0	-1008.3	-695.87	-409.72	1.2459E-4	4.6038	47876	-1.4434	47492	.39374	Į.
- 🗋 TkrEndcapHits		13	0	0	14.209	201.44	245.25	4.1456E-5	.67684	-1.6908E-4	-1.3521E-4	1.6649E-4	.055816	j –
- N VtvBarrHite		13	3	0	-502.00	-829.09	-411.88	7.2626E-6	5.3418	-4.4560E-4	-4.8823E-4	1.7634E-4	.026753	ĵ –
		13	3	0	-501.99	-829.11	-411.98	1.3489E-4	11.637	-1.1307E-4	2.4991E-4	-1.8961E-4	.15763	ĵ –
- U VIXEndcapHits		13	4	0	-502.01	-829.07	-412.08	9.5562E-5	11.638	-8.0698E-5	1.4025E-4	-2.2725E-5	.059711	1
🗕 🗋 MCParticleTree		13	4	0	-522.72	-1107.8	308.98	1.6136E-5	5.3875	-1.6609E-4	-1.3280E-7	-7.7428E-5	.012591	1
		13	1	0	450.39	-83.670	-277.66	1.1618E-4	5.4579	.60880	11152	37334	.31528	Į.
		13	2	0	711.64	-45.324	-439.01	1.4746E-4	2.8322	.55160	.28038	37190	.40679	j –
		13	3	0	932.81	262.66	-676.38	3.1136E-4	4.3661	.089296	.61067	37179	.86054	Ĩ.
		13	3	0	656.72	712.63	-1021.3	2.9856E-4	6.5973	58402	.19678	37198	.86028	ĵ –
		13	2	0	710.23	-62.015	297.64	8.8848E-5	16.662	-6.0126E-5	-1.0705E-4	1.8854E-4	.11730	j –
		13	3	0	284.65	1191.7	-707.28	2.2920E-4	15.751	-1.2470E-4	1.5541E-4	1.7885E-4	.13612	Ĩ.
		13	2	0	-620.81	350.84	678.55	.0046407	6.5994	081992	.021597	.063570	.39588	j –
		13	4	0	-552.72	-795.84	-709.98	3.8797E-5	7.6193	0088544	018904	.0083445	3.8274E-5	í –
		13	4	0	1202.9	-231.75	-1038.4	3.6846E-5	42.817	020545	.0095953	2.5424E-4	3.5348E-5	i -
		13	4	0	969.75	748.85	74.800	2.6749E-4	196.57	.0017414	0019064	0011791	.76857	1
		13	4	0	969.38	749.34	75.657	3.3350E-4	56.105	8.5247E-4	0010166	.0016451	.96327	1
		13	4	0	968.38	750.63	79.249	1.9381E-4	56.131	.0010754	0016248	8.6281E-4	.72866	1
		13	4	0	967.98	750.90	78.103	2.6077E-4	56.160	2.7965E-5	0017679	-5.1162E-4	.61755	
		13	4	0	968.83	749.80	77.435	1.1268E-4	56.167	7.2861E-4	7.2312E-4	-6.6238E-4	.34782	1
	100	13	4	0	968.84	749.94	76.883	6.5261E-4	56.170	-4.2154E-4	1.2642E-5	-3.0880E-4	.38377	1
		13	4	0	959.08	139.48	400.38	3.0113E-5	111.85	-5.6859E-5	6.7751E-5	-9.8716E-6	.0032125	í I
	100	13	3	0	1016.4	-683.83	411.76	4.9751E-5	13.180	9.7038E-5	-6.2164E-5	-7.0181E-6	.0077151	1-
		10			004.05	205.05		0.03545.5	40.004	0.00145.5	4 00005 4	0.0400F F	040000	1

SLIC: SimTracker Hit Depth Plot 5

Ĵ

SLIC: Combining Hits ⁶

• Used to consistently have O(1) hit per track crossing per layer in silicon tracker

- Except in case of interactions (fairly rare)
- Geant4 MCS fix changed this to O(4) hits / layer.
- Always possible to combine hits in SLIC (TPCS)
 - combine_hits flag
- Now an option to combine hits in the compact description
 - This will become the default in MC production runs.
 - Can still turn on for high precision studies, debugging, accuracy checks, etc.
- Sim code is a lot more complicated than single hits per step so bugs potentially exist.
 - We need to study new SLIC output thoroughly.

(compact)

SLIC: Magnetic Field Map

- SLIC and org.lcsim support an RZB field map
 - format from Takashi
 Maruyama's FORTRAN code
 - C++ interpolation code from Norman
- data is single quadrant
- symmetric in phi
- visualization with VTK (python)
- Working on implementation of DID/DIDn't
- •Working on arbitrary field map.

- •To study effect of non-uniform field, do not need to include in reco (yet).
- •Put field in simulation, analyze with perfect field. Difference gives maximum bound on the size of the effect. (Have Runge-Kutta propagators, but very slow.)

Compact: Regions and Limits ⁸

Regions can be used to set production cuts in compac

- limits production of secondaries (e+-, gamma)
 - potential distance < cut \rightarrow not produced
 - particle dEdX E(secondary)
- also called "range cut"
- different from setting physics limits

• physics limits

- set minimums and maximums
 - step length max
 - track length max
 - time max
 - kE min
 - range min (not same as production cut)
- step length useful for calorimeters
 - particle goes across > 1 pad

```
<regions>
<region name="EcalRegion" cut="0.5" lunit="mm" />
</regions>
```

```
---
<slice region="EcalRegion" ... />
```

```
imits>
imitset name="TrackerLimits"></limitset_length_max"</li>
value="1.0" unit="micrometer"
particles="*"
</limitset></limits></limits>
```

Infrastructure components

*Hit

- Defined at a surface.
- Provides a measurement and associated error
- Provides a mechanism to predict the measurement from a track fit
- Provides access to underlying cluster and/or digits

- Surfaces generally correspond to geometric shapes representing detector devices.
- * They provide a basis for tracks, and constrain one of the track parameters.
- The track vector at a surface is expressed in parameters which are "natural" for that surface.

- Surface defined coaxial with z, therefore specified by a single parameter r.
- *****Track Parameters: (ϕ , z, α, tan λ , q/p_T)
- ***Bounded surface adds** z_{min} **and** z_{max} .
- **Supports 1D and 2D hits:**
 - **1D** Axial:
 - 1D Stereo: φ+κz
 - 2D Combined: (ϕ, z)

XY Plane

- Surface defined parallel with z, therefore specified by distance u from the z axis and an angle φ of the normal with respect to x axis.
 Track Parameters: (v, z, dv/du, dz/du, q/p)
- *****Bounded surface adds polygonal boundaries.
- **Supports 1D and 2D hits:**
 - **1D Stereo:** $w_v * v + w_z * z$
 - **2D Combined:** (v, z)

Z Plane

- Surface defined perpendicular to z, therefore specified by single parameter z.
- *****Track Parameters: (x, y, dx/dz, dy/dz, q/p)
- Bounded surface adds polygonal boundaries.
- **Supports 1D and 2D hits:**
 - **1D Stereo:** $w_x * x + w_y * y$
 - **2D Combined:** (x,y)

Hits

Cylinder

- 1D Axial: ϕ (for convenience)
- 1D Stereo: φ+κz
- 2D Combined: (\u03c6, z)
- *****XY Plane
 - **1D Stereo:** $w_v * v + w_z * z$
 - 2D Combined: (v, z)

*****Z Plane

- **1D Stereo:** $w_x * x + w_y * y$
- **2D Combined:** (x,y)

Hit Interface

Hit	TrackerHit
HitVector measuredVector();	<pre>double[] getPosition();</pre>
HitError measuredError();	<pre>double[] getCovMatrix();</pre>
HitVector predictedVector();	<pre>double getdEdx();</pre>
HitError predictedError();	<pre>double getTime();</pre>
HitDerivative dHitdTrack();	<pre>int getType();</pre>
HitVector differenceVector();	
Cluster cluster()	List getRawHits();

Saving Hits in LCIO

- Must be able to write out and read back these hits.
- One solution is to simply define these as LCIO objects and implement the classes.
- Another is to try to shoe-horn the data into TrackerHit and use the type attribute to covariantly return the correct hit type when read back from disk.
- Investigating these possibilities is a highpriority task.

Base Classes

- A number of base class implementations of org.lcsim.event interfaces have been implemented and can be found in org.lcsim.event.base
 - BaseTrackerHit (and BaseTrackerHitMC)
 - BaseTrack
 - BaseReconstructedParticle
 - BaseMCParticle
- **Comments and suggestions are welcomed.**

Track Finding

Implemented a conformal mapping technique

- Maps curved trajectories onto straight lines
- Simple link-and-tree type of following approach associates hits.
- Once enough hits are linked, do a simple helix fit
 - circle in rPhi
 - straight line in s-z
- Use track parameters to predict track and pick up hits.
- Currently outside-in, but completely flexible.

Track Finding

Currently using vertex detector hits and forward tracker disk hits.

- VTX hits are pixels, so give 2D hits.
- FWD hits are assumed to be double layer of stereo strips, giving 2D hits (+ ghosts).
- Currently not handling ghosts, coming soon.
- Currently not extrapolating into barrel tracker (soon)
- ***5** hits in the central region.
- ***9+** hits in the forward region.

Data Samples

- *****Single muons
 - simple sanity check
- *****Multiple muons
 - next step in complexity, known momentum, acceptance and number of tracks to find.
- $t\bar{t} \rightarrow six jets$
 - reasonably tough real physics environment. Challenge is to define the denominator, i.e. which tracks should have been found.

Multiple Forward Muons

Generate 20 muons into the forward tracking region.

Always find 20 muons.

Multiple Forward Muons

22

Multiple Isotropic Tracks Generate multiple (10, 100, 200, 500) muons isotropically between 1 and 10 GeV down to 4 degrees of the beam. Find ~95% out of the box.

*n.b. some tracks are actually outside tracker acceptance.

tt →six jets

- *****Generate $e^+ e^- \rightarrow t\bar{t}$, $t\bar{t} \rightarrow six$ jets.
- Takes 3min to fully analyze 900 events on 1.7GHz laptop.
 - Open event, read in data.
 - Create tracker hits.
 - Find tracks.
 - Fit tracks.
 - Analyze tracks.
 - Write out histograms.

tt →six jets # of Hits

number of tracker hits

number of tracks found

time (s) vs # tracks (1.7GHz)

number vs time to find

time(s) per track (1.7GHz)

time to find per track (s)

of MCParticles/track

number of MC particles in track

tt →six jets pT

pT (meas-pred)

pT (meas - pred)

phi (meas – pred)

phi (meas - pred)

impact parameter

- A number of improvements has been made to the Geant simulation package slic.
- Improvements are being considered for the tracker hit and track infrastructure.
- Pattern recognition based on 2-D measurements on surfaces is implemented.
- *****Fast, with high efficiency.
- Extrapolation into outer tracker and fitting with full Kalman filter soon.
- *Lots of work ahead to characterize and improve.