### Tracking with SODTracker

Fred Blanc and Steve Wagner University of Colorado

SiD Tracking meeting March 17<sup>th</sup>, 2006

- SODTracker: Introduction
- Performance studies: efficiency and resolution
- Code availability

#### **SODTracker**

- Track finding and fitting in the Silicon Outer Detector (SOD)
- Method:
  - 1. Find seed tracks in the Vertex Detector
    - seed tracks from hit combinations in Vertex Detector
    - seed tracks from MCParticle true information (i.e. cheat track)
  - 2. Extend seed tracks by adding hits in Tracker
    - currently works in barrel only
    - option to add random noise for efficiency studies
  - 3. Fit tracks
    - circle fitter
    - Kalman filter fitter (not available yet)
  - 4. Insert SODTrack (implementation of Track) in event

#### Performance studies

- A) Track finding efficiency
- B) Circle fit **resolution** (and bias)
- Input data:
  - single-track Monte-Carlo
    - 2GeV, 10GeV, 20GeV ( $\theta$ =90°) pions

pi\_Theta90\_2GeV\_SLIC\_v1r9p3\_sidaug05.slcio pi\_Theta90\_10GeV\_SLIC\_v1r9p3\_sidaug05.slcio pi\_Theta90\_20GeV\_SLIC\_v1r9p3\_sidaug05.slcio

• 1-10GeV,  $\theta = 4-176^{\circ}$  pions

 $pions\_Theta 4-176\_1-10 GeV\_SLIC\_v1r9p3\_sidaug05.slcio$ 

- physics events
  - $e^+e^- \rightarrow ZZ$

panpyZZ-16-500\_SLIC\_v1r9p3\_sidaug05.slcio

•  $e^+e^- \rightarrow Zh$ 

panpyZh120-0-500\_SLIC\_v1r9p3\_sidaug05.slcio

# Track finding efficiency

- Run on single track MC
  - $-\theta=90^{\circ}$  (barrel only)
  - 2GeV, 10GeV, and 20GeV tracks
- Reject events in which the track has interacted with the detector material
- Efficiency = 99.2% at 2GeV
  99.9% at 10GeV
  99.6% at 20GeV
- no visible reduction in efficiency when noise is added (>100 hits/layer)





#### Momentum resolution

- Run on single track MC
  - $-\theta=90^{\circ}$  (barrel only)
  - 2GeV, 10GeV, and 20GeV tracks
- Apply circle fit
- Plot fitted momentum



- Gaussian fit to distribution (see next pages)
  - $\rightarrow$  good fit and good  $\chi^2$  in all 3 samples

$$\Delta p/p = 0.17\% => \sigma_p(p=10\text{GeV}) = 17\text{MeV}$$

- → small bias relative to generated momentum (~0.07%@20GeV)
  - => circle fit is already a good approximation!
  - => Kalman filter fit should improve further

### Momentum resolution (2GeV pions, $\theta$ =90°)



March 17<sup>th</sup>, 2006 SODTracker 6

### Momentum resolution (10GeV pions, $\theta$ =90°)



### Momentum resolution (20GeV pions, $\theta$ =90°)



March 17<sup>th</sup>, 2006 SODTracker 8

## SODTracker package

- Code ported from hep.lcd to org.lcsim (Steve Wagner)
- SODTrack output inserted in event (SODTrack implements *org.lcsim.event.Track*)
- Created package SODTracker
- Committed SODTracker to CVS (in org/lcsim/contrib/)
  => available for all to use
- Package also contains test driver in test/TestSOD.java
- Tested on single track and physics samples
  - => no crash (running on <u>single-track</u> and <u>physics events</u>)
  - => visualize SODTracks on event display (and in event browser)

## Event Display from $e^+e^- \rightarrow Zh$ MC

charged MCParticles only (blue)

overlaid SODTracks (white)



- Display only tracks in barrel
- Most barrel tracks are reconstructed
- Few missing tracks probably at larger azimuthal angle

### Summary

- New SODTracker package:
  - track finding and fitting in the Tracker
  - high efficiency (>99% on single-track MC)
  - good resolution, and very small bias (circle fit)
  - tracks inserted in event => can be used in event reconstruction
- Welcome comments and suggestions
- Next step:
  - Extend circle fit to full helix fit with Kalman filter => should recover already small bias in  $p_{t}$  (<0.1%)