

Planning the Experiment

Nick Walker 27.09.2009

Goals of 9mA test (summary)

- Demonstrate energy stability <0.1% (LLRF) with high beamloading
 - Bunch to bunch
 - Pulse to pulse

İİĹ

- Over many hours (~ shift)
- Evaluate operation close to cavity limits
 - Quench limits
 - Impact of LFD, microphonics etc.
- Evaluate LLRF performance
 - Required klystron overhead
 - Optimum feedback / feedforward parameters
 - Exception handling (development)
 - Piezo-tuner performance etc.
- Evaluate HOM absorber (cryoload)
- Controls/LLRF development
 - Software & algorithm development for ATCA (XFEL) LLRF system

"hands-off" running (monitoring)

Machine set-up & commissioning

 Achieving long-pulse 9mA beam pulse with high-gradient

Dedicated experiments
– within the 9mA context

A 3 Shift Cycle Proposal

- Afternoon Shift
 - Achieve required energy/current state and tune machine (LLRF)
- Night Shift

iļŗ

İİL

- Operations only (expert on call)
- Maintain configuration (quiet running, hands-off)
- Monitor all signals (DAQ, needs definition)
- Day Shift
 - Initial analysis of night-shift (stability achieved, problems, etc.)
 - Programme of invasive experiments at this energy/current state
 - Decision to go to next energy/current state
- 5 such cycles would be 5 days

9mA team & FLASH experts required for <u>2</u> <u>shifts</u> (day & evening)

Night shift left to ops to 'run beam'

Not without risk (high beam power!)

A 3 Shift Cycle Proposal

- Afternoon Shift
 - Achieve required energy/current state and tune machine (LLRF)
- Night Shift

:lr

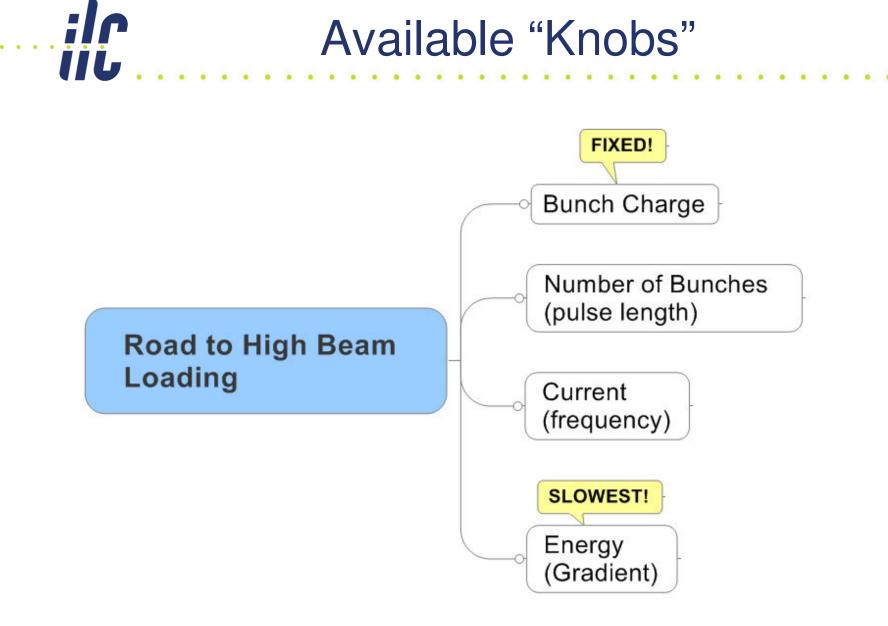
İİL

- Operations only (expert on call)
- Maintain configuration (quiet running, hands-off)
- Monitor all signals (DAQ, needs definition)
- Day Shift
 - Initial analysis of night-shift (stability achieved, problems, etc.)
 - Programme of invasive experiments at this energy/current state
 - Decision to go to next energy/current state
- 5 such cycles would be 5 days

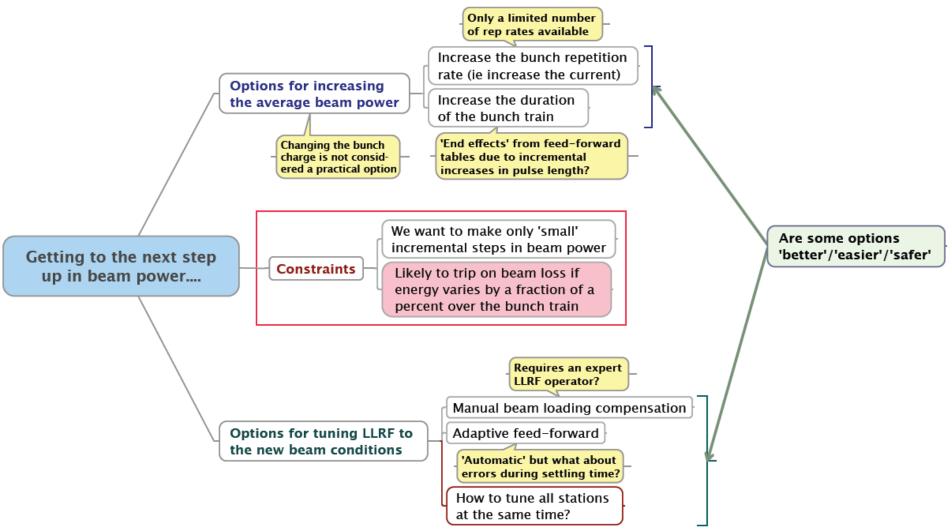
9mA team & FLASH experts required for <u>2</u> <u>shifts</u> (day & evening)

Night shift left to ops to 'run beam'

Not without risk (high beam power!)

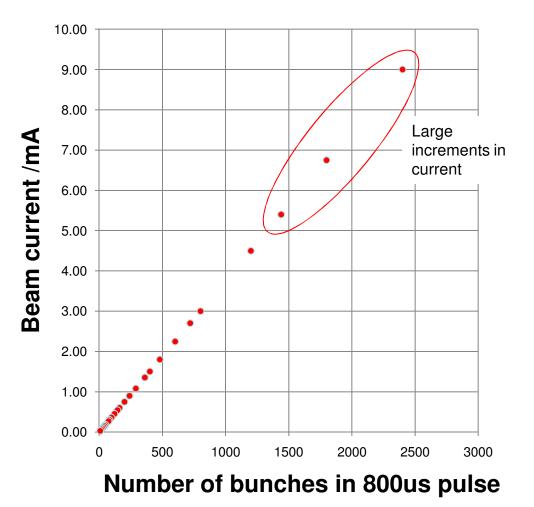

Achieving Long Pulses

Primary goal


ilc

- Requires a strategy
 - Step-wise approach to ultimate performance goal
 - Start at ~700 MeV and step up in energy
 - energy states
 - Establish long bunch trains and stable operation (1MHz, 3MHz,...)
- Each energy state (potentially current state) defines an interim experimental goal
 - Once achieved, maintain for ~shift (monitor)
 - Perform dedicated experiments / measurements at this state

Available "Knobs"


Incremental Approach

Control over Current

divider combinations							
9000	kHz	2	2	3	3	5	5
4500		Х					
3000				Х			
2250		х	Х				
1800						Х	
1500		х		Х			
1000				Х	Х		
900		х				Х	
750		х	Х	Х			
600				Х		Х	
500		х		Х	Х		
450		х	Х			Х	
360						Х	Х
300		х		Х		Х	
250		х	Х	Х	Х		
200				Х	Х	Х	
180		х				Х	х
150		х	Х	Х		Х	
120				Х		Х	Х
100		х		Х	Х	Х	
90		х	Х			Х	х
60		х		Х		Х	Х
50		х	х	Х	Х	Х	
40				Х	Х	Х	х
30		х	Х		Х	Х	Х
20		х		Х	Х	Х	х
10		х	х	Х	х	Х	х

ilc

Dedicated Experiments

- "Dedicated" = well-defined and specific experiments
 - Scan some parameter, make some measurement
 - Test software / scripts / automation
 - Hardware modifications, adjustments, ...
- Should be focused on 'goals' list

İİL

- Beyond long-term stability studies
- Understand/catalogue required beam and machine conditions
 - Repeat at each energy/current state ("<u>standard</u> <u>measurements</u>")
 - Requires a specific state or different state altogether.
- Previous scenario: these would be scheduled on day shifts

What do we measure?

- Standard
 - Scripts to produce set of "standard plots" after night shift (DAQ data)
 - Examples:
 - energy stability vs time
 - Correlations (probe vs energy etc.)
 - Beam loss and 'trip' analyses
 - Can we generate a list of these and start writing this scripts now?
- Characterisation
 - e.g. methods to monitor/quantify phase drifts

Parasitic / Other Experiments

- In principle, the machine time can support other accelerator studies
- Once we have our block schedule with intermediate goals/objectives defined, we can evaluate proposals
- 9mA experiment takes priority
 - No retuning of the machine!
 - Experiments must make use of (our) existing beam conditions
- During night shift, only parasitic experiments
- Note these should be treated as <u>guidelines</u>, not strict rules
 - All rules have exceptions if merited!

Next Steps

- Generate list of standard analysis packages (DAQ data)
- Solicit proposals for experiments
 Review & prioritise
- Identify a set of interim goals
 Strategy to achieve them
- Increasing the energy – When?

-

IIL