The JRA1 Final Telescope & some comments about EUDAQ

Daniel Haas DPNC Genève (CH) EUDET Annual Meeting 2009

- Final Telescope
- Usage of EUDAQ/EUTelescope
- Possible Upgrades to the 'final' Telescope
- Conclusions

Ingredients for the final telescope Hardware

- 2 Crates with 3 EUDRBs
- TLU
- 6 Mimosa 26 (1x2 cm)

Software

- EUDAQ
- EUTelescope

Final Telescope Chip: TC/Mimosa 26

Submission in Nov 2008

- Mimosa-22 (binary outputs) complemented with zerosuppression (SUZE-01)
- Active surface : 1152 columns of 576 pixels (21.2 x 10.6 mm²)
- Pixel pitch : 18.4 μ m \rightarrow 0.7 million pixels $\rightarrow \sigma_{sp}$ <3.5 μ m \Rightarrow pointing resolution 2 μ m on DUT surface
- Integration time ~110 $\mu s \rightarrow 10^4$ frames / second
- Throughput: 1 output at 80 Mbits/s or 2 outputs at 40 Mbits/s
- Needs adoption of readout electronics (EUDRB)

TC/Mi26 available/under test since March 2009

Page 5

DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE

DAQ: Hardware

EUDET Data Reduction Board:

- Mother board with ALTERA Cyclonell FPGA (clock: 80MHz) hosts core resources and Interfaces (VME64X slave, USB2.0, EUDET trigger bus)
- Analog Daughter card up to 20 MHz (4 channels)
- Digital daughter card drives/receives control signals for the detectors and features a USB 2.0 link
- NIOS II, 32 bit "soft" microcontr. (40Mz) for diagnostitics, pedestal+noise calculation and remote configuration
- Two readout modes: Zero Suppressed for normal data taking, raw readout of multiple frames for debugging or off-line pedestal and noise calculations

Trigger Logic Unit

- Two handshake modes
 - Simple handshake (Trigger/Busy/Reset)
 - Trigger data handshake incl. event number
- Timestamp and event-number via USB
- LVDS via RJ45, NIM and TTL via Lemo
 - Inputs for four trigger signals (ANDed, ORed, VETOed)
 - Internal trigger mode and scalers for testing Low voltage power supply for PMTs

DAQ: Software

- Platform independant (MacOSX, Linux, Windows)
- Object oriented, distributed and multithreaded
- Highly modular, but light-weight
- DAQ Software is divided into many parallel tasks:
 - RunControl to steer the task
 - several Producer tasks read the hardware
 - one DataCollector task bundles events, writes to file and sends subsets for monitoring
 - Several Online Monitoring tasks
 - Logger task allows to see what is going on

http://projects.hepforge.org/eudaq/

DAQ Changes - EUDRB & EUDAQ

EUDRB evolves with new sensors

- was successfully adapted to sensor Mimosa 18 (4x more pixels) (still with on-board zero suppression)
- Changes to readout the final telescope chip:
 - All done in firmware, no hardware modification needed
 - embedded M26 simulator operating in mode 0 (two channels @ 90 MHz)
 - the M26 interface operates at up to 90MHz
 - overlapping INPUT (frame acq.) and OUTPUT (VME readout) operations
 - interrupt-driven event read-out
 - 2e-SST block transfer (> 100MB/s burst rate)
 - leading word count in the output event data block

DAQ: Integration Concept

- How to integrate the DUT
 hardware with the EUDET beam
 telescope?
 - different groups with different detector technologies and different, pre-existing DAQ systems
- Use completely different hardware and DAQ for the DUT and the telescope
- Two levels of integration possible:
 - "easy" solution: at trigger level
 - full integration on DAQ software level

Analysis & Reconstruction Software

EUTelescope:

- Set of relevant high level objects (like tracks or space points) to characterize the DUT
- Histograms of important figures of merit.
- Based on available/tested software tools:
 - Single sensor analysis
 → sucimaPix (INFN)
 - Eta function correction \rightarrow **MAF** (IPHC)
 - Track fitting → Analytical track fitting and straight line fitting
 - Alignment → Millepede II
 - Framework → ILC Core software = Marlin + LCIO + GEAR + (R)AIDA + CED
- Sticking to the ILC de-facto standard offers the possibility to easily use the GRID

Each module is implemented in a Marlin processor

execute all of them together, or stop after every single step

DAQ: Users & Producers

- Direct implementation into EUDAQ is now 'standard' and easy
- New 'plugin'-Mechanism really makes life 'even easier'
- Users are in general very convinced about 'ease-of-use' and fast implementation
- TLU is a real 'seller'

Usage of EUDAQ

- Altro Bonn (Martin Killenberg)
- APIX Atlas Pixels (Georg Troska)
- DEPFET Bonn (Julia Fourletova)
- FORTIS/SPIDER Bristol (David Cussans)
- MimoRoma INFN (Toto)
- MVD DESY (Silvia Bonfanti)
- PixelMan Freiburg (Uwe Renz)
- SITRA Santander (Javier Gonzalez Sanchez)
- Taki Mannheim (Christian Takacs / Ivan Peric)
- Timepix Bonn (Martin Killenberg)
- Atlas TRT (Ilja Slepnev)

Usage of EUTelescope

- Depfet
- Atlas Pixels
- Atlas TRT
- And many more

There some groups (LHC) complain the 'bulkiness' of the framework for a testbeam environment

> RSITÉ NÈVF

Upgrades to the final telescope

- New Mechanics
- TLU with tagging mode
- Fiber-Hodoscope
- 'Ultimate' Chip (2x2 cm)
- Commercial Readout

Upgrade 1: New Mechanics

- Improved mechanics under design with:
 - Easier access to the chips
 - Better cooling
 - Easier and better metrology

Upgrade 2: Fiber-Hodoscope & Tagged Mode

- Could get a hodoscope with 32+32 fibers of 1 mm²
- This would help to run with high multiplicity to localize the triggered particle and improve alignment
- Would also be needed in the tagged mode, to have localization of the particles vs. time to match with faster DUTs
- Vincent Boudry could maybe provide us one (from CMS, where it is basically 'abandoned')
- Implementation and timeframe are under study.

Upgrade 3: The 'ultimate' chip

Ultimate EUDET BT

- Main characteristics:
 - * pixel pitch: 18.4×18.4 μm^2
 - * 1088 columns of 10³ pixels
 - \Rightarrow active area \sim 20.0 \times 18.5 cm²
 - \Rightarrow 1.7 times TC active area
 - * in-pixel processing μ -circuits with improved tolerance to ionising radiation : $\hookrightarrow \gtrsim 500 \text{ kRad} (> 10^{13} \text{ pions/cm}^2)$
 - * potentially \sim twice larger in-pixel signal amplification

⇒ improved SNR

- * read-out time \lesssim 200 μs
- Time line:
 - * design completed by February-March 2010 \Rightarrow foundry submission
 - * sensor expected to be available for EUDET-BT commissionning in Summer 2010
 - * no extra cost (masks funded by STAR collaboration)

Upgrade 4: 'Commercial' readout

- Current readout boards cannot be produced in big quantities.
- New readout based on National Instruments FlexRIO (PXI 7953R)
- Feasibility study performed by INRS together with NI
- Mainly as option for the 'copies' of the telescopes
- Will decide beginning of next year

Implementation Steps

Baseline (as it is running now)

- 2 VMEcrates with 3 EUDRBs
- 6 planes of Mi 26
- TLU in triggered mode

Step 1

• TLU in tagged mode (by summer 2010)

Step 2

- Additional Fiber-Hodoscope (by summer 2010)
 Optional
- 'Ultimate' Chip and higher surface

In Parallel (needed for 'other' telescopes anyway)

Implementation of 'commercial' readout

Conclusions

- Final telescope as specified for EUDET has been completed in September 2009 (Final Deliverable to EU)
- First users are emplyoing it since 1st of October and profit from 4-5x higher data rates (~1 kHz) compared to Demonstrator
- Will try to keep Demonstrator telescope alive in parallel at DESY (so 2 telescopes are available to users)
- Readout of the data is performed by nearly all users within the EUDAQ framework
- Analysis of the data is performed by part of the users with the EUTelescope framework
- Possible upgrades (corresponding to user demands) are under study
 - Tagged mode + Hodoscope
 - Bigger active surface
 - Copies of the telescope using a commercial readout

