IR Transparent Si microstrips

(alignment optimized Si sensors)

IFCA SiLC (a.o.): Marcos Fernández, Javier González, Richard Jaramillo, Amparo López, David Moya, Celso Martínez Rivero, Francisca Munoz, Alberto Ruiz, Iván Vila

CNM SiLC (a.o.): Daniela Bassignana, Manuel Lozano, Giullio Pellegrini, Enric Cabruja

4th EUDET Annual Meeting — Geneva 19th Oct. 2009

IR track alignment

• Aim: align Si microstrip sensors using IR laser tracks

• Higher $%T \Rightarrow$ simpler implementation of the system:

Transmittance	90%	80%	70%	60%	50%	40%
Traversed	30	15	10	7	5	4

- System features:
 - Laser intensity~200 MiPS \Rightarrow sharing same DAQ as Si detector
 - Silicon modules are directly monitored, **no external fiducial marks**

An idea that works ...

AMS-01 innovation (W. Wallraff)

- $\lambda = 1082$ nm, 110 μ m RO pitch
- IR "pseudotracks"
- 1-2 µm accuracy obtained

Transmittance~ 50%

 $\lambda = 1075 \text{ nm}$

- Some sensors need to be operated in saturation
 - 100 μm reconstruction error needed for L1 trigger

SiLC HPK alignment sensors

Set of 5 sensors out of a batch of 30 sensors produced by HPK.

3 used for SiLC alignment test beam prototype (Dec 08): LPHNE's SiTr-130-88 chip

2 used for **SiLC test beam (Aug 09):** APV25 readout by HEPHY

Note: Using CMS sensor optical design T[λ =1060 nm] ~16%

Constraints for maximum %T

• Developed <u>full simulation</u> of light propagation through sensor multilayer. <u>Diffraction</u> by strips taken into account (first time such detailed simulation has been done). Details in Eudet-Memo-2008-37

- Transmittance depends mostly on pitch over strip width
- Idea to boost %T:
 - 1) Choose optimal layout (sw/pitch=10%)
 - 2) Use passivation (=SiO₂+Si₃N₄) as an AntiReflection Coating (ARC)
- Recipe for production process:

Deposit each layer and measure its thickness (design thickness tolerance ≤5%)

Correct last Si3N4 layer if needed, according to plots like:

CNM sensors (GICSERV08)

- Prototypes built by CNM-Barcelona (Spain)
- Aims:
- Test %T vs multigeometry
- Use optical test structures (continuous layers) to extract refraction index and control deposition
- Test of electrical test structures

• 5+1 wafers

12 µstrip detectors
 per wafer (6 with
 intermediate strips,
 without metal
 contacts)

- 50 μm RO pitch
 (25 μm interm. strip)
- 256 RO strips
- 1.5 cm length
 varying strip width
 (3,5,10,15 μm)

- Mask designed by **D. Bassignana** (CNM)
- Electronic test structures designed by **M. Dragicevic** (Vienna) including: CAP TS AC, CAP TS DC, CMS Diode, MOS, GCD, Sheet
- Optical test structures available (Si, Si+p⁺,SiO₂, SiO₂+passivation)

Production progress

- Production started on 11th of May 09
- All processes done until deposition of 1st passivation layer (end of July 09)
- Thickness of all layers measured after each deposition
- For the 1st batch, we decided to hold the production just before deposition of the last passivation layer. Like this we can measure the wafer at an intermediate step
- Optical measurements were taken by end of July
 - Test structures (no internal structure)
 - Sensors (strips \Rightarrow diffraction)

- NIR spectrophotometer used for Optical measurements
 - --- %T : Measures spectrum with sample in/out
 - --- %R: Comparison against calibrated reflector

Top and bottom SiO2 passivation thickness measurements

Wafer 1 top SiO2 passivation thickness (nm)

Wafer 1 bottom SiO2 passivation thickness (nm)

- Aluminum (not shown) also measured
- All materials within requested 5% tolerance thickness

WAFER 1: Measured optical test structures vs simulated

• Test structures simulated (no fit involved)

n⁺ and p⁺ taken optically
 identical to Si

• 1st result: Transmittance of Si can be increased by ~30% with just 2 layers of 1 pr SiO2

New parametrization

for SiO2 refr. index used !!!

Photometric measurements of transparent microstrip detectors prior to last Si3N4 deposition

This is a control measurement before completion of sensor Last passivation layer(s) top and bottom Si3N4 determine overall transmittance

WAFER 1: Measured sensor vs simulated

• Diffraction orders:

• Plots show cummulative %T distribution up to 38 diffraction orders. For example: $T[2]=T[order 0]+T[o=\pm 1]+T[o=\pm 2]$

 Our calculation overestimates %T. Why? (see next page)

Diffraction: Far field calculation

Geometrical acceptance problem. Due to limited size of the sensing optics, not all radiation is captured \Rightarrow Update simulation to account for this effect (work in progress)

- IR tracks useful to align selected sensors. Higher %T needed to simplify system
- We are after a simple production process that can be easily implemented by large scale producer
 - Passivation=ARC
 - Layers deposited to 5% thickness tolerance
- 5+1 wafers with multigeometry sensors produced. Production stopped (foreseen) for control
 New SiO2 parametrization was needed
- Deposition tolerance at CNM is remarkable. Better than 5% in almost all layers
- Measurements of %T and %R were done
 - Simulated continuous optical test structures very close to measurements
 - Working on full sensor simulation

BACKUP

Framework and objectives

SITRA is one of the tasks of the Joint Research Activitiy JRA2 of EUDET.

These institutes, together with many other form the the SiLC (Silicon for the Linear Collider) collaboration, which is a **generic R&D collaboration** to develop the next generation of large area Silicon Detectors for the ILC. It applies to all detector concepts and gathers teams from all proto-collaborations.

The main goal of SITRA within the EUDET project is to develop and install a test beam infrastructure based on silicon tracking detectors.

The role of IFCA within the SITRA task is to beam-test a prototype of the alignment system to work out the alignment challenges, the distortions handling and calibrations for the overall tracking system. The alignment prototype will be based on a system developed for LHC, using laser beam and Si sensors to measure the detector position with high precision. (from EUDET Annex 1 documentation, pg. 45)

SIXTH FRAMEWORK PROGRAMME

Annex I - "Description of Work"

Project acronym: EUDET Project full title: Detector R&D towards the International Linear Collider

Marcos Fernandez - IFCA

Can observed difference be due to thickness measurement error?

No (as long as measurement error < 5 nm)

Observed that 5 nm error on SiO2 influences much more than 5 μ m error on Si

Can observed difference be due to refraction index scaling?

Maybe... (if we allow n(SiO₂) change of 2.5%)

Propagation angle of diffraction order i: θ_i sin θ_i = sin θ + i $\lambda/(n_{siO2}p)$

Notes:

- First diffraction order falls 5.3 mm away from normal
- We have a 1.5 mm diameter pinhole at the measurement plane

Simulation of planeparallel structures

• Simple simulation: multiple reflections \Rightarrow interferences \Rightarrow Calculation of (T,R)

Refraction index either tabulated or modeled using dispersion relations

$$n(\lambda), k(\lambda), d_i \implies \mathbf{T}_{calc}, \ \mathbf{R}_{calc} = f[n(\lambda), k(\lambda), d_i]$$

(i=1...Number of layers)

— Or solve the **inverse problem**:

$$\mathbf{T}_{meas}$$
, $\mathbf{R}_{meas} = f[n(\lambda), k(\lambda), d_{i}] \Rightarrow n(\lambda), k(\lambda), d_{i}$

using non-linear least squares fit

 Inverse method used to characterize material samples from CNM

Full optical simulation

- Microstrip layer is not continuous.
- Interferences alone do not describe measured spectra. Needed to account for **diffraction**
- Fresnel and Fraunhoffer approximations for diffraction not applicable here, because some layers are transparent..

Then:

- Solve Maxwell equations rigorously
- Using **RCWA method** (see <u>EUDET-memo-2008-37</u>):
 - Fields expressed as Fourier expansions
 - RODIS software for diffraction efficiency at any order.

Measurement of CNM diffraction sample

• CNM produced a simple wafer to test the simulation, using GICSERV07 access.

Optimization constraints

— Study done at 2 different wavelengths:

1) Readily available IR laser wavelength λ =1085 nm

2) longer (exotic) wavelength λ =1100 nm (higher transmittance of Si).

— Fixed readout pitch (SiLC baseline+Beetle chip) is 50 μm. One intermediate strip What is the best strip width?

— Repeatability on the deposited thickness of a material is a percentage of its thickness.
 So the thicker the material is, the worse accuracy on thickness achieved