GEM & TimePix Larger Pixels, New Insights

A. Bamberger, M. Köhli, M. Lupberger, <u>U. Renz</u>, M. Schumacher

Introduction

- » GEMs
- » Pixel enlargement
- » Experimental setup

• Studies with 1x1 and 2x2 chips

- » Comparison of effective threshold for both chips.
- » Gain Estimation
- » Studies with TOT calibration of individual pixels.
- Summary
- Future Plans

Principle

- 2 layers Cu each 5 μm thick, separated from each other by 50 μm Kapton.
- Conical etched holes largest Ø70 μm, diagonal distance of holes 140 μm.

F. Sauli, http://www.cern.ch/GDD

Triple-GEM-setup

- •Gas gain up to 10⁵ in ArCO₂
- ⇒Necessary because charge is typically spread over several pixels (>> 50 pixels)
 Minimizing the positive ion backdrift
 Localized region of amplification
 Reliable operation, only few sparks

Motivation for larger Pixels

- Charge of cluster is spread over several pixels:
 - Reduces number of e⁻ per channel.
 - Increases effective threshold.
 - Requires high gas gain to detect minimum ionizing particles.
- Large pixels:
 - Collect more charge per pixel ⇒Reduce effective threshold.
 - Need less gas gain \Rightarrow Smaller number of positive ions.
 - Optimize pixel size versus spatial resolution.
 - Strong diffusion between cascaded GEM stack.

⇒Very small pixels not necessary

Pixel Enlargement IZM

TimePix is used as highly segmented charge collecting anode

- Post processing of complete wafer from Bonn group by IZM Berlin:
 »Different pixel sizes
 - »Different pixel geometries
- Two post processed TimePix tested
 - •1x1: pixel metallization extended from \approx 20x20 μ m² to 50x50 μ m²
 - •2x2: pixel size extended to 105x105 μm² by passivating 3 out of 4 pixels and adding metallization

universitätbonn

Dimensions & Features

256 x 256 pixels²
55 x 55 µm² pixel size
14 x 14 mm² active area
Measures Time Over Threshold (TOT)
External test pulse can be injected in pixels

Test Setup

Eudet Annual Meeting

Test Setup with Laser

19.10.2009

Eudet Annual Meeting

<u>Fe⁵⁵ clusters with 1x1</u>

•Muros (37MHz) used for 1x1

<u>Fe⁵⁵ clusters with 2x2</u> <u>TimePix (USB)</u>

TOT not directly comparable : has to apply factor 80/37 to 1x1 TOT values

• Use Laser to characterize response of a test device using few or single primary e⁻

Following cluster information are reconstructed for both sources: Laser and Fe⁵⁵
 »ClusterSize = number of pixels in a cluster

»ClusterCentroid = geometric center of cluster (x,y)

»TotVolume = sum of all TOT counts in a cluster

»TotAtCluster = TOT value at the cluster centroid

»Eccentr = eccentricity of a cluster

ClusterSize-Spectra

1x1 spectrum

2x2 spectrum

Typical argon spectra with escape and photo peak

- Factor 10 difference in cluster size.
- For now: Take only TOT value at center of cluster to compare. effective threshold of 1x1 and 2x2 chips.
 - \Rightarrow value independent of cluster size

TOT at Cluster Centroid-Spectra

- To compare 1x1 and 2x2: Determine peak position for different GEM voltages.
- Look for same TOT value of 1x1 and 2x2 and estimate difference in ΔV_{GEM} .
- Problem:
 - » Different thresholds for 1x1 and 2x2 TimePix
 - » Different readout interfaces \Rightarrow different clocks must be corrected
 - » Other systematic uncertainties are investigated

TOT Counts at Cluster Centroid vs. ΔV_{GEM}

•To account for different clocks 1x1 results are corrected with factor 80/37. •For about same TOT value \approx 55V smaller ΔV_{GEM}

•Lower effective threshold \Rightarrow Less backflow of positive ions into drift volume.

TotVolume-Spectra 1x1

- Goal: Measure effective gain \Rightarrow Determine TotVolume at photo peak.
- But: Need conversion from TOT to charge in $e^- \Rightarrow$ calibrate TOT of TimePix using external test pulses.

Gain Estimation

• "Recipe" to calibrate TOT with test pulses:

- » Charge of injected test pulses (TimePix-Manual): Q = 50[e⁻/V] x TestPulse[V]
- » Conversion factor from TOT count to charge ("chipwise").

•Estimate Charge deposition from TOT volume of a cluster.

New approach for calibration

 TOT depends linear on the deposited charge Q:

 $TOT = b \cdot Q + a$

- Until now: Calibration with test pulses is done chipwise.
 - \Rightarrow But every Pixel has its own response function

Muros?

Muros with Test Pulses

• Results indicate: Muros small variations in pixel response.

• Fluctuations for time being not separable from statistical deviations.

Eudet Annual Meeting

Muros & USB - Comparison

- Are these distribution homogenous across the chip?
- Are these distributions the same for Muros and USB interfaces?
- Our expierence shows:

USB interface:

• more noisy

inhomogeneous pixel response

- Pixel enlargement reduces effective threshold.
- •Gain measurement nice agreement between reference from GDD at CERN and TimePix:

» Systematic errors are under study

» Calibration with TimePix 2x2 will be done soon

 \Rightarrow Estimate gain at lower $\Delta {\rm V}_{\rm GEM}$

• Problems with USB are only present for measurements with test pulses

•Refined and more detailed analysis in progress

Future Plans

- Tests with new chamber and 8 Channel HV:
 - » Further study 1x1 , 1x3, 1x5, 2x2, 3x3, 4x4... TimePix chips
 - » Parameter scan to find optimal settings V_{GEM}, E_{Drift}, E_{Transfer} and E_{induction}.
 - » Test ageing properties of material used for passivation, pixel enlargement and possibly Ingrids.
- New gate generator will create very stable shutter signal for TimePix
 - » Less than 1ns jitter
 - » Allows very exact determination of precision in time for any device under test (e.g. TOT or TIME like measurements for Gossip/TimePix2).
- Laser test bench together with radioactive sources allows accurate characterization of all possible combinations of MPGDs and pixel readout

Backup Slides

New "Box"

<u>Features</u>

- Modular construction with (adapted) standardized components.
- Avoiding of outgassing components or glue-
- 1" windows for tests with laser, beam or radioactive sources.
- Gas in- & outlets
- 9 SHV channel-feedthroughs
- Electronics connected through a customizable board.
- Sensors for pressure, humidity and temperature.

19.10.2009

Tot Volumes vs. ΔV_{GEM}

• Values corrected for different clock use with 2x2 (USB/80MHz) and 1x1 (MUROS/37MHz).

- Summed TOT (=TOT Volume) of a cluster proportional to total charge in clusters.
- For comparison different cluster sizes and thresholds must be taken into account.

TOT-Volume 2x2

Eudet Annual Meeting

Eccentricity for 1x1

Eccentricity for 2x2

Eccentricity-Position Correlation: C07 3900V

eccentr:yCoord

Eccentricity-Position Correlation: K07 3300V

eccentr:yCoord

Comparison of Measurements between Muros and USB

Laser-Spectra 2x2

Laser-Spectra-C07 2x2

