CALICE Test Beam Data and Hadronic Shower Models

Riccardo Fabbri

on behalf of the CALICE Collaboration

EUDET Annual Meeting

CALICE and Calorimeters

AHCAL Response to Positron Showers

Investigation of Hadron Showers

Monte Carlo Comparison with Data

Including the ECAL in Hadron Analysis

Conclusions and Outlook

Geneva, 19 October 2009

Riccardo Fabbri

The CALICE Collaboration

- ${\small \textcircled{\sc op}}$ CALICE: ≈ 300 physicists/engineers from 53 groups in 17 countries
- Investigate/develop options for high granularity calorimeters
 - ⇒ demonstrate feasibility of Particle Flow Approach for a future Linear Collider detector

The CALICE Collaboration

- ${\small \textcircled{\sc op}}$ CALICE: ≈ 300 physicists/engineers from 53 groups in 17 countries
- Investigate/develop options for high granularity calorimeters
 - ⇒ demonstrate feasibility of Particle Flow Approach for a future Linear Collider detector
- Focus given to combined Drift_Chambers + ECAL + HCAL + TCMT test-beam operations, in common DAQ/Analysis framework
- Test beam goal:
 - \Rightarrow establish technology to use
 - \Rightarrow tune the reconstruction algorithms
 - \Rightarrow validate/tune Monte Carlo models

CALICE Test-Beam Program

Main combined physics run with μ, e^{\pm}, π^{\pm} beams:

2006-07

- SiW ECAL + AHCAL + TCMT @CERN

2008

- SiW ECAL + AHCAL + TCMT @ FNAL

2008-09

- W/ScintStrip ECAL + AHCAL + TCMT @FNAL

2010 (planned)

- SiW ECAL + DHCAL + TCMT @FNAL

The results presented here concern the investigation of hadron showers using the CALICE 2007 data, mainly AHCAL data

– p.3

CALICE Detectors Setup: 2007

ECAL

(2×1.4mm of W plates) (1.4mm of W plates)

Structure 1.4

Structure 2.8

Structure 4.2 (3×1.4mm of W plates)

Metal inserts (interface)

- size: 109x109x142 cm 3
- 16 layers
- 1 layer: 8 scintill.strips
- 1 strip: 100x5x0.5 cm 3
- 1 SiPM readout per strip
- 2/10 cm steel absorber
- 5.5 λ_I interaction length

- 38 layers
- 7608 tiles
 - size: 3x3/6x6/12x12 cm 2
- SiPM readout
- 4.5 λ_I interaction length - prototype setup: 1 m³

Detector slab (30) - SiW sandwich structure

Central slabs

- 30 layers of 3x3 modules
- 1 module: $6x6 1 \text{ cm}^2$ pads
- Si PIN diode readout
- total rad. length: $24X_0$

 $-X_0/\lambda_I = 27.4$ Riccardo Fabbri

Positron Data Analysis

- ⇒ Electromagnetic/Muon analysis needed to validate calibration procedure and Monte Carlo digitization
- \Rightarrow Prerequisite to studying hadron showers

AHCAL Response to Positron Showers

Using up-to-date calibrations/corrections to data and up-to-date MC digitization:

– p.6

Response to EM showers linear up to tens of GeV \Rightarrow enough for hadron analysis

Pion Data Analysis

Hadronic Showers in AHCAL

High granularity of CALICE prototypes allows investigation of longitudinal and lateral aboves usefiles with summer coloret provisions.

Hadronic Showers in AHCAL

High granularity of CALICE prototypes allows investigation of longitudinal and lateral shower profiles with unprecedent precision

Riccardo Fabbri

Shower start can be determined

 \Rightarrow taking care of large fluctuations

in hadronic shower development

 \Rightarrow leakage can be measured wrt shower

start and corrected for

Development of Hadronic Showers Monte Carlo Comparison with Data [GEANT4 Models]

Longitudinal Hadronic Shower Profiles

GEANT4 physics model lists are compared with data (AHCAL + TCMT) ×10⁻³ ×10⁻³ ×10⁻³

Longitudinal Hadronic Shower Profiles

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$ 80 GeV $\pi^+ \angle 28.3^\circ$ event 2.5 data event LHEP QGSP BERT mip mip 15 FTF BIC X QGSP_FTFP_BER Х QGSC_CHIPS 80 GeV cm² ີ ບຸ 1.5 FTFP BERT TRV 10 energy density energy density data LHEP QGSP_BERT 10 GeV 5 FTF BIC 0.5 QGSP FTFP BER QGSC CHIPS FTFP BERT TRV 0 n 2000 2500 3000 2000 3000 2500 wrt to absolute coordinates: z [mm] z [mm] ×10⁻³ 10 GeV $\pi^- \angle 28.3^\circ$ <u>×1</u>0⁻³ 80 GeV $\pi^+ \angle 28.3^\circ$ × event 5 shower start systematic event data LHEP shower start systematic 30 mip QGSP BERT LHEP FTF BIC QGSP_BERT mip QGSP FTFP BERT FTF BIC \times cm² QGSC CHIPS QGSP_FTFP_BERT FTFP BERT TRV <u>cm²</u> QGSC CHIPS 3 FTFP BERT 20 energy density 10 Ge 80 Ge 2 energy density 10 0 500 1000 0 0 500 1000 0 z [mm] wrt to shower start: z [mm] **EUDET Meeting, October 2009 CALICE Data and Hadronic Shower Models** p.10 **Riccardo Fabbri**

Longitudinal Hadronic Shower Profiles

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-3}$

Radial Hadronic Shower Profiles

Radial Hadronic Shower Profiles

Radial Hadronic Shower Profiles (continued)

GEANT4 physics model lists are compared with data (AHCAL only)

Radial Hadronic Shower Profiles (continued)

GEANT4 physics model lists are compared with data (AHCAL only)

Mean Hadronic Shower Radius

Mean Hadronic Shower Radius

GEANT4 physics model lists are compared with data (AHCAL + TCMT) 10 GeV $\pi^{-} \ge 28.3^{\circ}$

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $10 \text{ GeV } \pi^{-} \angle 28.3^{\circ}$

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $10 \text{ GeV } \pi^{-} \angle 28.3^{\circ}$

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $10 \text{ GeV } \pi^{\circ} \angle 28.3^{\circ}$

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $10 \text{ GeV } \pi^{-} \angle 28.3^{\circ}$

GEANT4 physics model lists are compared with data (AHCAL + TCMT) $10 \text{ GeV } \pi^{\circ} \angle 28.3^{\circ}$

Combining Info from all CALICE Calorimeters

Use of Tail Catcher (TCMT)

Tail Catcher ($\approx 5\lambda_I$) needed to contain hadron showers leaking from AHCAL

Used in many analyses presented here

Use of SiW ECAL

- **W** Hadron showers not contained in SiW ECAL ($pprox 1\lambda_I$) \Rightarrow still, many start there
- Calorimeter offers granularity and segmentation higher than AHCAL
 - ⇒ hadronic shower models have different shapes due different particle components
 - \hookrightarrow models can be potentially constrained

Examples of simulations: 8 GeV π^- starting showering at calorimeter start

Summary and Outlook

- CALICE succesfully operated in test beam runs at CERN 2006-07 & FNAL 2008-09
 - \implies here preliminary results from 2007 data taking period shown
- Detector response to electromagnetic showers understood
 - \implies linearity within pprox 4% in electromagnetic analysis
 - \hookrightarrow sufficient for hadronic analysis
- analysis on hadronic showers ongoing and developing
 - \implies Analysis algorithms developed (shower starts, clustering, ...)
- Unprecendented high granularity allows detailed hadron shower investigation
 - ⇒ longitudinal/transverse/differential shower development
- Comparison of several models with data
 - \hookrightarrow possibly providing constraints on Monte Carlo models
 - \implies agreement typically within 20%; spotted discrepancies depending on model, incoming hadron energy, analysed observable
 - \hookrightarrow ongoing discussion with GEANT4 experts
 - \hookrightarrow ongoing efforts to better understand our data

Summary and Outlook

- CALICE succesfully operated in test beam runs at CERN 2006-07 & FNAL 2008-09
 - \implies here preliminary results from 2007 data taking period shown
- Detector response to electromagnetic showers understood
 - \Longrightarrow linearity within $\approx 4\%$ in electromagnetic analysis
 - \hookrightarrow sufficient for hadronic analysis
- analysis on hadronic showers ongoing and developing
 - \implies Analysis algorithms developed (shower starts, clustering, ...)
- Unprecendented high granularity allows detailed hadron shower investigation
 - \implies longitudinal/transverse/differential shower development
- Comparison of several models with data
 - \hookrightarrow possibly providing constraints on Monte Carlo models
 - \implies agreement typically within 20%; spotted discrepancies depending on model, incoming hadron energy, analysed observable
 - \hookrightarrow ongoing discussion with GEANT4 experts
 - \hookrightarrow ongoing efforts to better understand our data

Stay tuned, more to come from CALICE

CALICE Test-Beam Detailed Program

2006

- DESY: SiW ECAL commissioning
- CERN: SiW ECAL, AHCAL, TCMT commissioning
- CERN: SiW ECAL, AHCAL(23 layers), TCMT combined physics runs

2007

- DESY: W/ScintStrip ECAL commissioning
- CERN: W/Si ECAL, AHCAL(38 layers), TCMT combined physics runs
 - \Rightarrow inclined beam incident / calo scan
- FNAL: DHCAL test

2008

- FNAL: W/Si ECAL, AHCAL, TCMT combined physics runs
 - \Rightarrow inclined beam incident / calo scan
 - \Rightarrow energy range extended down to $\approx 2~{\rm GeV}$
- FNAL: W/ScintStrip ECAL, AHCAL, TCMT combined physics runs

@ 2009

- FNAL: W/ScintStrip ECAL, AHCAL, TCMT combined physics runs
- 2010 (planned)
- FNAL: SiW ECAL, DHCAL, TCMT combined physics runs

Riccardo Fabbri

The Scintillator HCAL Prototype

Prototype setup [1 m³]:

38 layers in sandwich structure:

- scintillator tiles + 2 cm absorber (steel)
- total interaction length 4.5 λ
- \blacksquare Tile size: 3x3 cm^2 , 6x6 cm^2 , 12x12 cm^2

Tot nr. of tiles: 7608

One SiPM (1x1 mm^2) per tile:

- wavelength-shifter coupled
- developed by MEPhi/Pulsar

Riccardo Fabbri

ullet 1156 pixels (30x30 μm^2) per SiPM:

— Geiger mode

Gain Calibration

- ${}^{\textcircled{a}}$ Gain defined as $G=rac{Q_{pixel}}{e}$: \Longrightarrow typically $Q_{pixel}pprox$ a few 100 fC $pprox 10^6$ e
- Each SiPM has its own gain
- Gain can be monitored via dedicated measurements during data taking
 - illuminate SiPMs with low intensity LED light
 - fit single-pixel spectra for each SiPM
- χ^2 / ndf 1106 / 1220 — gain \propto distance between two Prob 0.9914 A_0 Events 3.086e+04 ± 271 0 *pixels* mean 1109 ± 0.6 adjacent pixel peaks σ_0 60.96 ± 0.55 250 A₁ $2.758e+04 \pm 303$ mean₁ 1348 ± 0.7 pixels σ_1 59.05 ± 0.76 200 A_2 1.83e+04 + 291 mean 1582 ± 1.0 σ_2 65.53 ± 1.31 2 pixels **Calibration efficiency (CERN data):** A٦ 9958 ± 282.8 150 mean, 1813 ± 1.8 σ_3 67.31 ± 2.17 — 96.9% SiPMs calibrated A_4 6153 ± 244.7 mean₄ 2057 ± 2.8 100 - 1.7% LEDs off 84.85 ± 4.26 σ₄ - 1.4% missing calibration 50 1000 1200 1600 1400 2200 1800 2000 2400 2600 ADC channels **GAIN** CALICE Data and Hadronic Shower Models **EUDET Meeting, October 2009** – p.23 **Riccardo Fabbri**

MIP Calibration

MIP calibration: conversion from Hw ADC values (variable from channel to channel)

to a physical quantity

- \Rightarrow SiPM response to passage of minimum ionizing particles
- \Rightarrow calibration done using muon beam at CERN

Saturation Correction

SiPMs non-linear due to limited number of pixels (1156) and to pixel recovery time

Non-linearity corrected with saturation curves [response vs input signal]

- two sets of curves available: ITEP and LED monitoring system
- differences between them originated by fiber-SiPM mis-alignement

UP to 2007: curves from ITEP

NOW: extract asymptotic level from in-situ curves and rescale ITEP curves

 \Rightarrow improvement in calorimeter response

EUDET Meeting, October 2009

Temperature Correction of SiPM Gain

SiPMs operated in Geiger mode: $V_{bias} = V_{breakdown} + \Delta V$ (pprox 50 - 60V)

 $V_{breakdown}$ temperature dependent $\Longrightarrow \Delta V$ temperature dependent

Temperature monitoring system implemented

Temperature correction (also for A_{MIP}) implemented in the analyses presented here

Riccardo Fabbri

EUDET Meeting, October 2009

Key feature for particle flow approach (PFA):

combined Tracking+ECAL+HCAL+Software info for jet energy resolution

Consider HCAL reconstructed E from distinct events (charged tracks initiated)

Key feature for particle flow approach (PFA):

combined Tracking+ECAL+HCAL+Software info for jet energy resolution

Consider HCAL reconstructed E from distinct events (charged tracks initiated)

- merge events and reconstruct showers

Key feature for particle flow approach (PFA):

combined Tracking+ECAL+HCAL+Software info for jet energy resolution

- Consider HCAL reconstructed *E* from distinct events (charged tracks initiated)
 - merge events and reconstruct showers
 - assume a PFA scenario:

charged track + neutral \hookrightarrow fix 1 charged track energy from test-beam energy

Key feature for particle flow approach (PFA):

combined Tracking+ECAL+HCAL+Software info for jet energy resolution

 \blacksquare Consider HCAL reconstructed E from distinct events (charged tracks initiated)

Key feature for particle flow approach (PFA):

combined Tracking+ECAL+HCAL+Software info for jet energy resolution

Onsider HCAL reconstructed E from distinct events (charged tracks initiated)

Monte Carlo Physics Model Lists

LHEP (Low/High Energy Parameterization)

— two sets of parameterization of existing data from GHEISHA for E<55 GeV and

E>25 GeV. Randomly pick up one of the two lists in common energy region

QGSP (Quark-Gluon String)

- model for the primary projectile-nucleon collision plus the precompound model for de-excitation of the nucleus. Used for E>12 (E>20) GeV for protons, neutrons, pions, kaons (other particles). Outside this energy range LHEP is used
- QGSP_BERT (QGSP + Bertini cascade model)
- used for E<10 GeV for nucleons, pions, kaons and hyperons
- includes remnant nucleus de-excitation, Fermi breakup and fission

QGSP_BERT_HP

- High Precision package for neutron transport used in QGSP_BERT for E<100 MeV.
- QGSP_BIC (QGSP + Binary cascade model)
- model valid for E<3 GeV protons and neutrons, E<1.5 GeV pions, and E<3 GeV/A light ions. Remnant nucleus de-excitatiion handled by precompound model

QGSC

- QGS for the primary projectile-nucleon collision
- Chiral Invariant Phase Space model for nucleus de-excitation

- Describes the light output of organic scintillators
- \blacksquare Fluorescence S in general not proportional to energy loss
 - \Rightarrow quenching effects between excited molecules
 - with low energy electrons ($<125~{\rm KeV}$)
 - scintillation by heavy ions < than by electrons

$\Delta S \propto \frac{\Delta E}{1 + k_B (\Delta E / \Delta x)}$

- k_B is the Birks' constant
- \Rightarrow must be determined for each scintillator