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[] Introduction

The LHC will explore the energy range to to ~ 3TeV

_|_

Why do we want an e"e™ collider in the same or even lower energy range?

e [llectrons are elementary particles:

—well known initial state
—energy-momentum conservation can be used in event-reconstruction

—energy scans allow precise mass measurements

e Fllectrons and positrons can be polarised: in a parity violating model
the helicity structure can be probed

e [Klectrons don'’t have strong interactions: all processes have similar cross
sections
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Possible eTe™ collider projects

4
Synchrotron radiation goes like (%) /r
[1 only linear colliders are possible to go significantly beyond LEP

Two projects under study:

o [[.C

— Linear collider in superconducting technology
— Energy range: 200 GeV < /s < 500 GeV, upgradable to 1 TeV
— Detailed design exists from a world-wide collaboration

o CLIC

— Linear collider in two-beam technology
— Higher gradient allows energy range /s < 3TeV
— Studied in an international collaboration at CERN

— Proof of principle in the next few years
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General features for linear colliders

e Beams can only be used once [ loss of luminosity

e To compensate for this beams must be squeezed to nm size
[1 Beamstrahlung

— Beam energy not exactly defined anymore
— Large background from low energy e™e™ pairs close to the beampipe

Energy of colliding electrons Low energy e™e ™ -pairs
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Beam Parameters

[LC 500 | CLIC 500 | CLIC 3000

Luminosity [10°*cm ™5™ "] 2 2 8
Beam size [nm?] 5.7 % 640 12 x 202 | 0.7 x 60
Bunch length |pm] 300 35 35
Bunch spacing |ns| 370 0.67 0.67
Train frequency [Hz| 5 200 100
Train length [bunches] 2600 154 154
Electrons/bunch [101] 2 0.4 0.4
Crossing angle [mrad] 14 20 20
Energy loss from beamstrahlung [%]| 2.4 4.4 21

EUDET meeting Geneva/CERN ) Klaus Monig



The Physics Case for a Linear Collider

e Assume that LHC is fully explored when LC starts
e The direction of physics beyond the SM should be known

e Most new particles in the LC energy range are discovered
[] can design the LC according to expected physics

e However masses and couplings are known with only moderate precision
[] need a new machine to really fix the model

e Many examples have been studied in detailed
[1 will show few examples to illustrate the case

e Up to now no example is known where no significant improvement due
to the LC was seen

e In the past better precision always led to new insights
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What precision buys you

Example 1: Cosmic microwave background

COBE:

Supernova Cosmology Project
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Before LEP & SLLD

— Example 2: Z couplings
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Better precision allows for a com-
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Disclaimers

Disclaimer I: Most detailed physics studies are done for the ILC assum-
ing model parameters that give signals in the ILC range. If the new
physics is at higher energies they can easily be transferred to CLIC.

Disclaimer II: CLIC can also run in the ILC energy range. We know
that the precision must be worse due to the less favourable beam pa-
rameters but we are missing detailed studies to quantity this.

HZ — 1777 ete” ILC 32BX (= 16ns) CLIC500 (K. Desch)
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[1 The top Quark

The top mass

e Hadron colliders can measure the top-mass to ~ 1 GeV at most
e [For electroweak precision tests this is sufficient

e However in models where the Higgs mass can be obtained from other
model parameters (e..g. SUSY) there a large corrections from top-loops
(Amy/Amy = O(1))

[1 Higgs mass only useful if top-mass is known to similar precision

Hoang et al
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Top-quark couplings

e The top-mass is close to the vacuum expectation value of the Higgs

e In many models of electroweak symmetry breaking it therefore plays a
special role

e The ttW couplings can be measured from the top-decay

e A LC can measure ttZ couplings from the top-production using cross
section, Ay p, App and top polarisation

e A large sensitivity to BSM-physics can be achieved
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[ Higgs physics

e [t a roughly SM like Higgs exists LHC will find it

e However ILC has still a lot to do to figure out the exact model and to
measure 1ts parameters

1 doublet

SM-like SM
little Higgs

Higgs at

mixed with

LHC Radion

Special role of top quark
(little Higgs, top—colour)
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e Main production at eTe™ colliders

Higgsstrahlung W-fusion
e+ H
> Z
y
e Cross section:
) 10 — m, =120GeV (HZ)
S my, = 500 GeV (HZ)
—— my, =120 GeV (WW-fusion)
-------- m,, = 500 GeV (WW-fusion)
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First key measurement: Unbiased eTe™ — HZ measurement from recoil
mass

e Select events eTe™ — ZX with Z — (70~

e Can see Higgs peak in recoil-mass spectrum without any link to Higgs
decay products

ete — wu X

[ 1 Unbiased measurement of Eéloo
HZZ coupling
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branching ratios
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Since we are at en EUDET meeting...

...resolution matters
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Higgs couplings

e The HZZ coupling can be directly obtained on the 3% level from the
recoil measurement

o [f the Higgs is reasonably light (my < 140 GeV) the branching ratios
to many fermions can be measured with good accuracy

e [{bb remains visible up to around my < 200 GeV
e The ttH coupling can be measured from ttH final states
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Advantage of high energy (CLIC): fusion cross section rises

= rare decays can be measured with better precision
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The Higgs self-coupling
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...and again:
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Applications of precision Higgs measurements

e Many coupling measurements lead way to —
new physics looking at patterns - am, M. = 175 GeV, tan@ = 5

e In a model (SUSY) precision couplings al- ol
low measurements of model parameters
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tan 3

Heavy SUSY Higgses

e The LHC has problems to see
heavy SUSY Higgses for medium

e An eTe -LC is sensitive up to al-

most

V32

e [n a photon-collider-mode it can
see heavy (neutral) Higgses even
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[ Supersymmetry

o [f SUSY is in an LC range LHC

should have discovered it

e [f R-parity is conserved (dark mat-
ter!) the LHC has problems to
measure the absolute mass scale

e The LC can measure all masses,
including the invisible LSP, with
reconstruction  methods  and
threshold scans

e A mass precision in the 100 MeV
region 18 possible
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The LC measurements can also im-
prove the LHC precision for heavy
superpartners

Possible precision in MSSM18:
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This allows for a powerful test of
unification, testing the underlying
model of supersymmetry-breaking

B.C.Alanach et al
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Where do we expect SUSY

e Slight indications from (g — 2), that SUSY is light but be careful
because of eTe™ — 7 problem and recent Barbar data!

ALCPG cosmology group
R R LU

» S Ty
ai% e s &

e Dark Matter studies within 1
mSUGRA indicate that either ] ™
SUSY is light (bulk region) Py
or in special regions like small T I e i
F— ) or ¥¢ — ¢ mass differ-§ e
ence or resonance conditions like
m(*?) ~ mH/2 E;; co—annihilation region

e Bulk region gives lots of SUSY al- '
ready for ILC

e However in special regions SUSY
can be heavy My
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CLIC should see most of the SUSY spectrum in most cases

mm=  gluino === squarks === gleptons - ———— H
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M. Peskin, Victoria

But is it really SUSY / Conventional SUSY

what we see? T

>“('O
/ 4 VLSP
(Murayama)

LHC sees a £7¢~ mass edge, g
but what is 1t? . / |
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(Cheng Machev Schmaltz)
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A Freltas et aI hep ph/O3101:
models 0.03 ; |
M. Peskin s = 500 Gev . 68%cl.
' 0.02 L =500 b ' ]
350 F F---- . :' .'I
300 [ g 0.01 [;' \“‘\;\\\
8wl KK muons s ;
< 8 0 | ' |
X [ 1 @ L. '\\‘/ |
Tl | Bonoee-aam el |
+ 3 I “:\~~\\s\ E
L oof smuons . j :' !
° 50 | | -0.02 ¢ | ,,’ i
i o€'e> et ) |
o 1 1 1 1 r 1, l‘ 1
380 400 420 440 460 480 500 _0.004 _0.002 0 . 0.002 0.004
and also prove Ecm (GeV) U(1) coupling

EUDET meeting Geneva/CERN 27 Klaus Monig



Dark Matter Reconstruction

e Understanding dark matter is one of our most urgent problems

e In a model like SUSY all dark matter properties can be calculated when
the model parameters are known

e In practice only the properties of a few particles are needed

e For light SUSY LHC does pretty well with the density, LC matches the
precision of Planck, however for the cross section already here LC1000
1s needed
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However in more dificulty scenarios nothing can be said without a LC at
high energy

e.g. focus point region

Dark matter density Qh? Spin dependent Xn cross section
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e Many alternative scenarios have been studied

e In all cases a significant gain of knowledge from a LC has been found
e [ispecially in the no-Higgs cases high energies > 1 TeV are essential

e Here restrict to two cases

— ADD extra dimensions

— Models with an extended gauge sector
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Extra dimensions (ADD)

e Visible from KK-graviton radiation (missing energy) and KK-Graviton
exchange (Z-like signal)

e Challenge: identify Graviton nature (J=2) of exchange particle
[] can be done with asymmetries in 2-fermion production

e Number of extra dimensions can be measured from energy dependence
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Extended Gauge Sector

e Many models predict heavy neutral gauge bosons (Z’)

e Signals of the Z’ can be seen in 2-f production far below the Z’ mass

e Cross sections and asymmetries give access to individual couplings

e Formally a 0.5-1TeV LC can set better limits than LHC
e More interesting, if the LHC sees a Z’, the LC can identify the model
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[1 Conclusions

We need a LC in addition to the LHC in any case:

Higgs: - > SUSY ? -
(oD (e

LC fills LHC loopholes
LC can see signals of SEWSB

|

Measure as many parameters as poss

Extrapolation to GUT scale shows way
to breaking mechanism

Measure properties of dark matter

LC sensitive to new gauge sector with high precision
To | v .
P Higgs properties guide way
- to model of EWSB
Several models have additional
gauge bosons (ED, little Higgs)

Precision mass &
ew couplings
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