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➊ Introduction

The LHC will explore the energy range to to ∼ 3 TeV

Why do we want an e+e− collider in the same or even lower energy range?

• Electrons are elementary particles:

– well known initial state

– energy-momentum conservation can be used in event-reconstruction

– energy scans allow precise mass measurements

• Electrons and positrons can be polarised: in a parity violating model
the helicity structure can be probed

• Electrons don’t have strong interactions: all processes have similar cross
sections
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Possible e+e− collider projects

Synchrotron radiation goes like




E
m





4
/r

➟ only linear colliders are possible to go significantly beyond LEP

Two projects under study:

• ILC

– Linear collider in superconducting technology

– Energy range: 200 GeV ≤
√

s ≤ 500 GeV, upgradable to 1 TeV

– Detailed design exists from a world-wide collaboration

• CLIC

– Linear collider in two-beam technology

– Higher gradient allows energy range
√

s ≤ 3 TeV

– Studied in an international collaboration at CERN

– Proof of principle in the next few years
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General features for linear colliders

• Beams can only be used once ➟ loss of luminosity

• To compensate for this beams must be squeezed to nm size
➟ Beamstrahlung

– Beam energy not exactly defined anymore

– Large background from low energy e+e− pairs close to the beampipe

Energy of colliding electrons
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Beam Parameters

ILC 500 CLIC 500 CLIC 3000

Luminosity [1034cm−2s−1] 2 2 8

Beam size [nm2] 5.7 × 640 12 × 202 0.7 × 60
Bunch length [µm] 300 35 35
Bunch spacing [ns] 370 0.67 0.67
Train frequency [Hz] 5 200 100
Train length [bunches] 2600 154 154

Electrons/bunch [1010] 2 0.4 0.4
Crossing angle [mrad] 14 20 20
Energy loss from beamstrahlung [%] 2.4 4.4 21
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The Physics Case for a Linear Collider

• Assume that LHC is fully explored when LC starts

• The direction of physics beyond the SM should be known

• Most new particles in the LC energy range are discovered
➟ can design the LC according to expected physics

• However masses and couplings are known with only moderate precision
➟ need a new machine to really fix the model

• Many examples have been studied in detailed
➟ will show few examples to illustrate the case

• Up to now no example is known where no significant improvement due
to the LC was seen

• In the past better precision always led to new insights
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What precision buys you

Example 1: Cosmic microwave background
COBE:

WMAP:
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Example 2: Z couplings

Better precision allows for a com-
pletely new quality of understanding
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Disclaimers

Disclaimer I: Most detailed physics studies are done for the ILC assum-
ing model parameters that give signals in the ILC range. If the new
physics is at higher energies they can easily be transferred to CLIC.

Disclaimer II: CLIC can also run in the ILC energy range. We know
that the precision must be worse due to the less favourable beam pa-
rameters but we are missing detailed studies to quantify this.

HZ → τ+τ−e+e− ILC 32BX (= 16ns) CLIC500 (K. Desch)
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➋ The top Quark

The top mass

• Hadron colliders can measure the top-mass to ∼ 1 GeV at most

• For electroweak precision tests this is sufficient

• However in models where the Higgs mass can be obtained from other
model parameters (e..g. SUSY) there a large corrections from top-loops
(∆mH/∆mt = O(1))
➟ Higgs mass only useful if top-mass is known to similar precision

• LC can measure mt and Γt with a
threshold scan to ∼ 50 MeV preci-
sion

• Contrary to reconstruction meth-
ods (LHC) the threshold mass is
theoretically well under control
➟ ∆mt(MS) ≈ 100 MeV possible 346 347 348 349 350 351 352 353 354
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Top-quark couplings

• The top-mass is close to the vacuum expectation value of the Higgs

• In many models of electroweak symmetry breaking it therefore plays a
special role

• The t̄tW couplings can be measured from the top-decay

• A LC can measure t̄tZ couplings from the top-production using cross
section, ALR, AFB and top polarisation

• A large sensitivity to BSM-physics can be achieved
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➌ Higgs physics

• If a roughly SM like Higgs exists LHC will find it

• However ILC has still a lot to do to figure out the exact model and to
measure its parameters

Higgs at

LHC
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• Main production at e+e− colliders

Higgsstrahlung W-fusion
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First key measurement: Unbiased e+e− → HZ measurement from recoil
mass

• Select events e+e− → ZX with Z → ℓ+ℓ−

• Can see Higgs peak in recoil-mass spectrum without any link to Higgs
decay products

➟ Unbiased measurement of
HZZ coupling

➟ Unbiased basis for Higgs
branching ratios

• Measurement best at cross
section maximum

√
s ≈

mH + mZ + 40 GeV

• However possible in a
rather wide energy range 80 100 120 140 160 180 200
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Since we are at en EUDET meeting...

...resolution matters
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Higgs couplings

• The HZZ coupling can be directly obtained on the 3% level from the
recoil measurement

• If the Higgs is reasonably light (mH <∼ 140 GeV) the branching ratios
to many fermions can be measured with good accuracy

•Hbb̄ remains visible up to around mH <∼ 200 GeV

• The t̄tH coupling can be measured from t̄tH final states
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Advantage of high energy (CLIC): fusion cross section rises

⇒ rare decays can be measured with better precision
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The Higgs self-coupling

• The HHH coupling can be mea-
sured from ZHH events at

√
s =

500 GeV and ννHH events at√
s ∼ 1 TeV

• Studies up to now use H → bb̄

• Combining both energies gives
∆λHHH = 12% for mH =
120 GeV degrading with higher
Higgs masses

• For higher energies the larger cross
section gets partly compensated
by a lower sensitivity
➟ significant gain only for heavier
Higgses

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

1 2 3 4 5

120 GeV
140 GeV
180 GeV
240 GeVM   =H

 s (TeV)

1/
σ

∆σ
/∆

λ

EUDET meeting Geneva/CERN 18 Klaus Mönig



...and again:

∆E/
√

E = 60%(1 + cos θjet) ∆E/
√

E = 30%
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Applications of precision Higgs measurements

• Many coupling measurements lead way to
new physics looking at patterns

• In a model (SUSY) precision couplings al-
low measurements of model parameters

• Similarly mass measurements allow deter-
mination of model parameters

gW/gW(SM)

g
b
/g

b
(S

M
)

MSSM prediction:
200 GeV < mA < 400 GeV

400 GeV < mA < 600 GeV

600 GeV < mA < 800 GeV

800 GeV < mA < 1000 GeV

LC 95% CL (w/o fusion)

LC 1σ (w/o fusion)

LC 95% CL (with fusion)

LC 1σ (with fusion)

mH = 120 GeV
c)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

gW/gW(SM)

g
b
/g

b
(S

M
)

MSSM prediction:
200 GeV < mA < 400 GeV

400 GeV < mA < 600 GeV

600 GeV < mA < 800 GeV

800 GeV < mA < 1000 GeV

LC 95% CL (w/o fusion)

LC 1σ (w/o fusion)

LC 95% CL (with fusion)

LC 1σ (with fusion)

mH = 120 GeV
c)

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

150 200 250 300 350 400 450 500
MA [GeV]

115

120

125

130

135

m
h [G

eV
]

∆mh
exp

            mt = 175 GeV, tanβ = 5

theory prediction for mh

δmt
exp

 = 2.0 GeV

δmt
exp

 = 1.0 GeV

δmt
exp

 = 0.1 GeV

Heinemeyer et al.

2HDM

EUDET meeting Geneva/CERN 20 Klaus Mönig



Heavy SUSY Higgses

• The LHC has problems to see
heavy SUSY Higgses for medium
tan β

• An e+e−-LC is sensitive up to al-
most

√
s/2

• In a photon-collider-mode it can
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up to 0.8
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➍ Supersymmetry

• If SUSY is in an LC range LHC
should have discovered it

• If R-parity is conserved (dark mat-
ter!) the LHC has problems to
measure the absolute mass scale

• The LC can measure all masses,
including the invisible LSP, with
reconstruction methods and
threshold scans

• A mass precision in the 100 MeV
region is possible

µ energy from e+e− → µ̃+
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The LC measurements can also im-
prove the LHC precision for heavy
superpartners

Possible precision in MSSM18:

Improvement of LHC m(q̃) by ILC m(χ̃0
1)
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This allows for a powerful test of
unification, testing the underlying
model of supersymmetry-breaking
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Where do we expect SUSY

• Slight indications from (g − 2)µ that SUSY is light but be careful
because of e+e− − τ problem and recent Barbar data!

• However missing EDMs and B-physics point to heavy scalars

unless phases are zero

• Dark Matter studies within
mSUGRA indicate that either
SUSY is light (bulk region)
or in special regions like small
τ̃ − χ̃0

1 or χ̃±
1 − χ̃0

1 mass differ-
ence or resonance conditions like
m(χ̃0

1) ≈ mH/2

• Bulk region gives lots of SUSY al-
ready for ILC

• However in special regions SUSY
can be heavy
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CLIC should see most of the SUSY spectrum in most cases
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But is it really SUSY
what we see?

LHC sees a ℓ+ℓ− mass edge,
but what is it?

M. Peskin, Victoria

Bosonic Supersymmetry

(Murayama)

(Cheng Machev Schmaltz)

LSP~ν

Conventional SUSY

q~

q~

qKK ZKK l KK KKγ

l~ ν~

χ~0 χ~0

χ~0

l~

q

q

q

l l

l
l

l l

ν

The ILC can distinguish the different
models

M. Peskin

and also prove

that the couplings are correct

e  e+ − ~
Re ~

Reσ(                    )

e  e+ − ~
Re ~

Leσ(                    )

s = 500 GeV

L = 500 fb
−1

U(1) coupling

SU
(2

) 
co

up
lin

g

A.Freitas et al. hep−ph/0310182

68% c.l.

EUDET meeting Geneva/CERN 27 Klaus Mönig



Dark Matter Reconstruction

• Understanding dark matter is one of our most urgent problems

• In a model like SUSY all dark matter properties can be calculated when
the model parameters are known

• In practice only the properties of a few particles are needed

• For light SUSY LHC does pretty well with the density, LC matches the
precision of Planck, however for the cross section already here LC1000
is needed

Spin independent cross section
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However in more difficulty scenarios nothing can be said without a LC at
high energy

e.g. focus point region

Dark matter density Ωh2 Spin dependent Xn cross section
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➎ Exotics

• Many alternative scenarios have been studied

• In all cases a significant gain of knowledge from a LC has been found

• Especially in the no-Higgs cases high energies ≥ 1 TeV are essential

• Here restrict to two cases

– ADD extra dimensions

– Models with an extended gauge sector
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Extra dimensions (ADD)

• Visible from KK-graviton radiation (missing energy) and KK-Graviton
exchange (Z‘-like signal)

• Challenge: identify Graviton nature (J=2) of exchange particle
➟ can be done with asymmetries in 2-fermion production

• Number of extra dimensions can be measured from energy dependence
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Extended Gauge Sector

• Many models predict heavy neutral gauge bosons (Z’)

• Signals of the Z’ can be seen in 2-f production far below the Z’ mass

• Cross sections and asymmetries give access to individual couplings

• Formally a 0.5-1 TeV LC can set better limits than LHC

• More interesting, if the LHC sees a Z’, the LC can identify the model
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➏ Conclusions

We need a LC in addition to the LHC in any case:

Yes
SUSY?

No

Yes

LC fills LHC loopholes

LC can see signals of SEWSB

LC sensitive to new gauge sector

Top

Precision mass &
ew couplings

Yes

Measure as many parameters as possible
Extrapolation to GUT scale shows way
to breaking mechanism

Measure properties of dark matter
with high precision

Higgs properties guide way
to model of EWSB

gauge bosons (ED, little Higgs)
Several models have additional

No

Higgs?
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