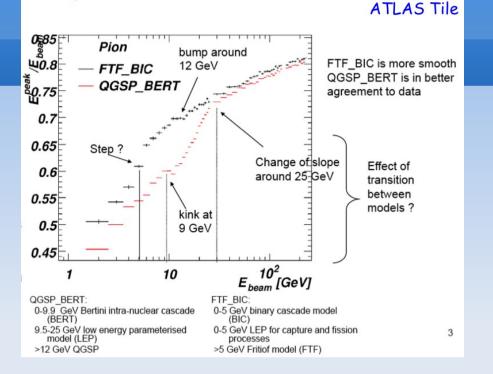


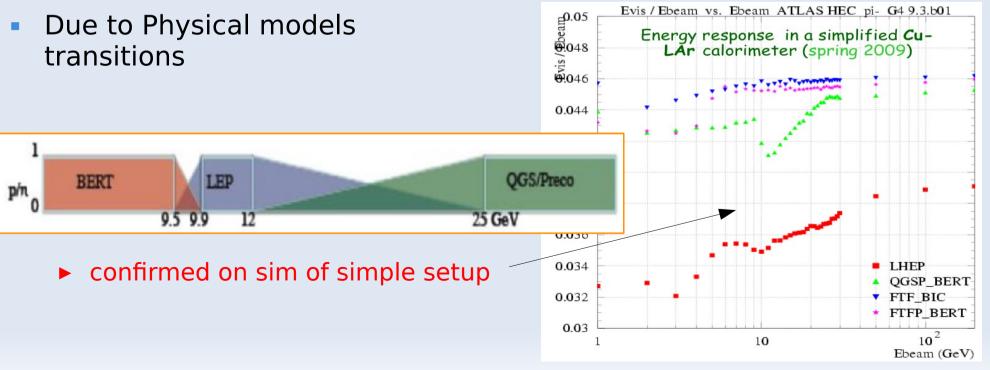
Summary of the Integrated LC detector tests + Test beam data and Geant 4 validation (JRA3 and NA2)

Vincent Boudry LLR, École polytechnique

EUDET annual meeting U. of Geneva 20/10/2009

Session in total


- Mix of 2 sessions
- 4 talks
 - Vladimir Grichine: Development and validation of hadronic models in Geant4 in a wide range of energies
 - Riccardo Fabbri: CALICE test beam data and hadronic shower models
 - Erika Garutti for Vasily Morgunov
 Simulation studies on a combined calorimeter and magnetic spectrometer set-up
 - Imad Laktineh: Calorimeter and Si tracking for PFLOW studies


EUDET Annual meeting, Geneva, 19-21 October 2009

Development & Validation of Geant4 Hadronic Models in a Wide Energy Range J.Apostolakis, A. Dotti, G.Folger, V.Grichine, V.Ivanchenko, M.Kossov, A.Ribon, V.Uzhinsky, D.Wright* CERN PH/SFT, *SLAC

π's long. shower profiles

- ATLAS TileCal TB @ 90° (2008-09)
 - MC/Data within ±10% up to 10 λ. (π's)
 -(20%-40%) at 10 λ (protons)
- Unphysical discontinuities vs E_{beam} (CMS reported, ATLAS confirmed)
 - very worrysome for jets

The problem analysis road-map

Reproduce the problem with simplified calorimeter

Compare different Physics models (from Lists)

Understand the microscopic origins of the differences between models

Identify differences that are/can-be important

Need to confirm by <u>comparing to thin-target</u> data

Improve use of hadronic models in Physics Lists:

- 1. Change the transition regions between models
 - in existing Physics Lists (e.g. to avoid key deficiencies)

С

o m p

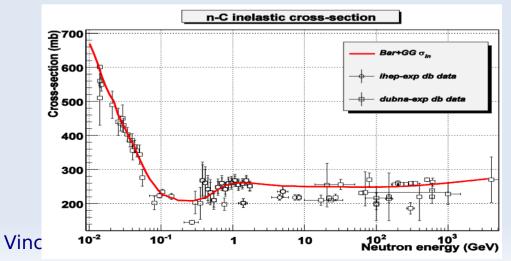
е

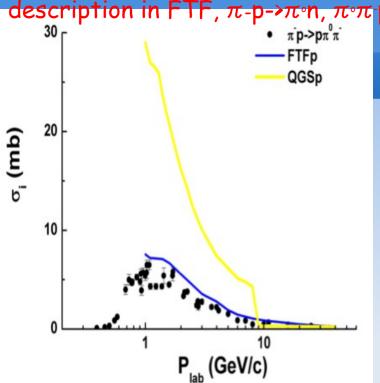
X

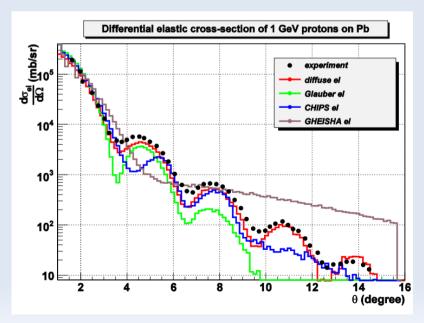
y

- 2. Create novel mixtures of models in new Physics Lists
 - potentially with fewer models/transitions
- 3. Improve the hadronic models (best but takes more time)

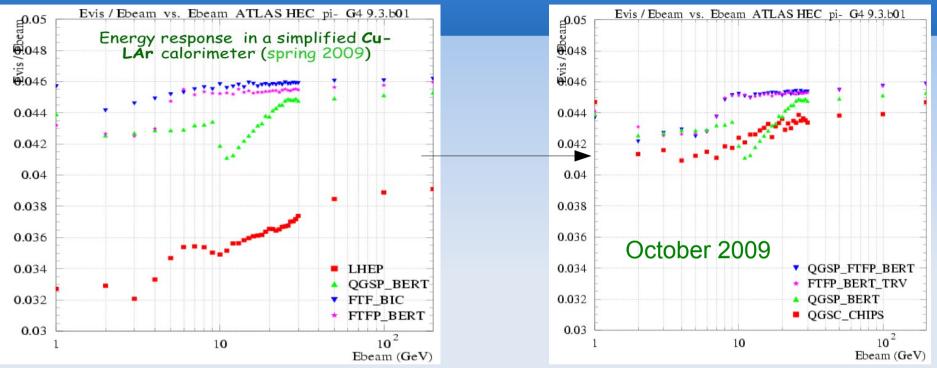
Results of Models Comparisons


(plots ->backup) Comparisons between models indicate LEP (parameterised) differs from all other models Confirmed in thin-target; aim to eliminate use Bertini and Binary Cascade models produce excess energy in protons (and neutrons) above 3-5 GeV \Box Fritiof produces too many π^0 's below ~6 GeV Quark-Gluon-String results stable down to ~ 9 GeV Use could be extended down to 9-10 GeV Energy non-conservation in FTF/BIC - being fixed RMS are similar for almost all models Suggestion on a likely better choice of the transition regions, and/or model mixing (see next slide)


Experimental Physics Lists available in 9.3.b01


test of G4 (cont)

- Models compar (1000's jobs) \rightarrow copy transp 9
 - many differences
 - \Rightarrow Improvement of models
 - Binary channel description in FTF, π -p-> π °n, π ° π -p
 - new p-A spectrums (HARP data) $(d\sigma^2/dp/d\Omega \text{ vs } P_{\tau} \text{ in GeV range})$
 - n-C model over 0,01—103 GeV range



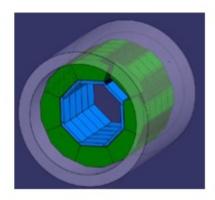
Binary channel description in FTF, π -p-> π on, π or, π or, p

Outlook

- Comparison G4 models \rightarrow hints of validity range
- Useful to compar with other sims (Fluka, MCNPX, Dubna cascade...)
- Todo:
 - more thin-target data in 1—20 GeV range
 - improve/extend models
 - Link model-level feature to calo observables
 - not only visible energy

CALICE Test Beam Data and Hadronic Shower Models

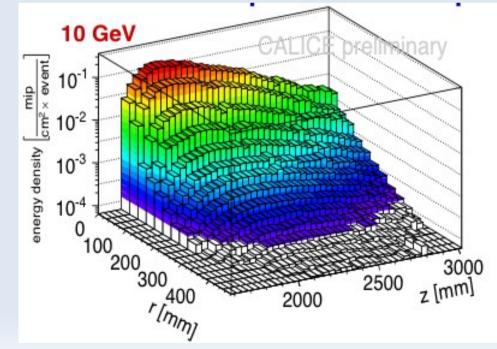
Riccardo Fabbri


on behalf of the CALICE Collaboration

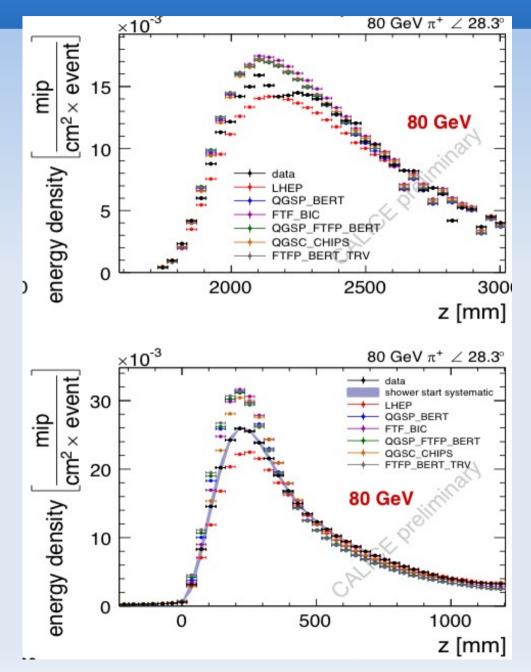
EUDET Annual Meeting

CALICE and Calorimeters

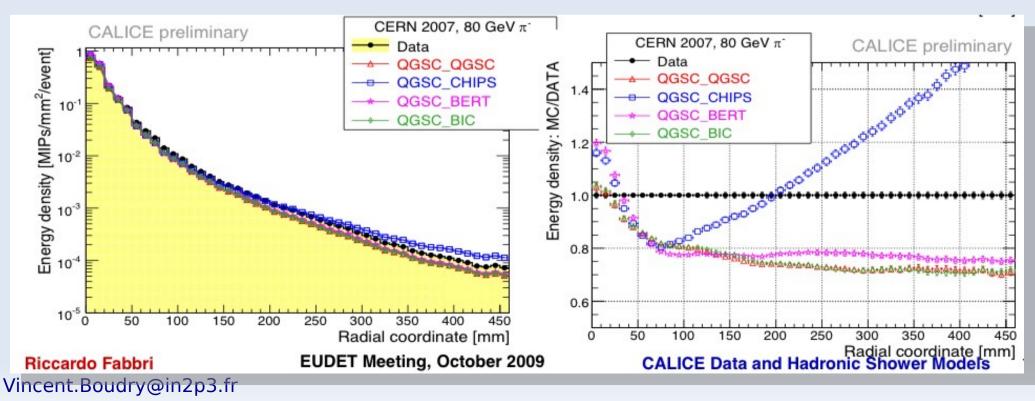
AHCAL Response to Positron Showers


- Investigation of Hadron Showers
- Monte Carlo Comparison with Data
- Including the ECAL in Hadron Analysis
- Conclusions and Outlook

Geneva, 19 October 2009


CALICE TB for test of G4 (Riccado Fabbri)

- Many TB data : ECAL (SiW|ScintW) + AHCAL|DHCAL + TCMT
 @ CERN, FNAL since 2006 → 2010...
- for the Analog HCAL
 - with 2007 data
 - ▶ Positron data + muon data $[p6] \rightarrow$ calibration of the AHCAL response
 - 10% Data-MC agreement
 - Longitudinal & lateral profiles with unprecedented spatial precision


Longitudinal profile comparison

- ⇒ shower start estimation
 - ► ⇒ leakage correction
- Direct model comparison
 (▲ still preliminary ▲)
 - "Typically, models predict higher density in the shower maximum and lower density in the tails"

Lateral profiles

- wrt the primary track
 - dE/dr typically OK ~<20%;
 - core overestimated,
 - tails under-estimated
 - except QGSP_Chips [in ß vers.], more neutrons...
 - ► Shower radius vs Ebeam → all narrower than data (except QGSP_Chips)

Differential profiles

Long profile in bins of ρ (0; 6; 12; 18; 18; 24 cm)

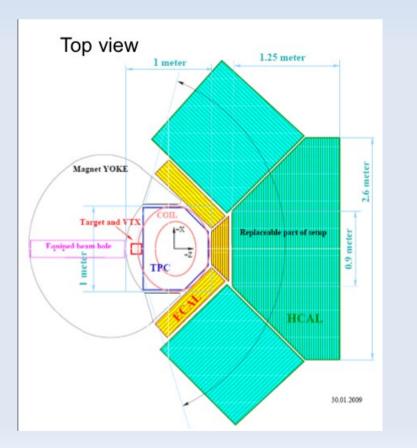
- "Typically, Models predicts higher density in the shower core"
- "Better agreement at relatively large radial distance"
- "Large radial distance better described @ low E (undershoot @ high E)

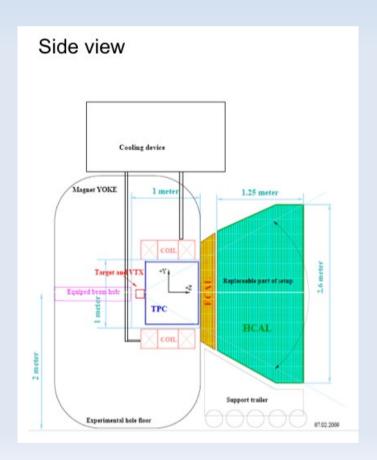
Vincent.Boudry@in2p3.fr

Calice TB data & MC models Outlook

- AHCAL + TCMT
 - improvement of resol (as expected)
- ECAL + AHCAL (CERN 2007)
 - ▶ higher segmentation → sensibility to \neq contrib in had. shower
 - Analysis ongoing
- Conclusion
 - ► CERN 2007 shown only → CERN 2006-07 & FNAL 08-09 avail.
 - EM response well understood
 - Had shower corrected for shower start
 - long, lat, differential \rightarrow constraint on MC model
 - Agreement @ 20% level with well spotted discrepancies
 - ► Discussions & exchanges with G4 experts on-going...

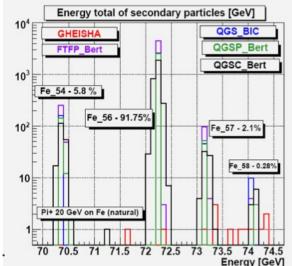
Simulation studies on a combined calorimeter and magnetic spectrometer set-up

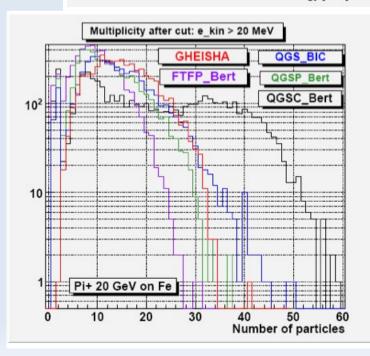

Erika Garutti on behalf of Vasily Morgunov


4th EUDET annual meeting Geneva, 19-21 October 2009

Sim studies of combined calo setup

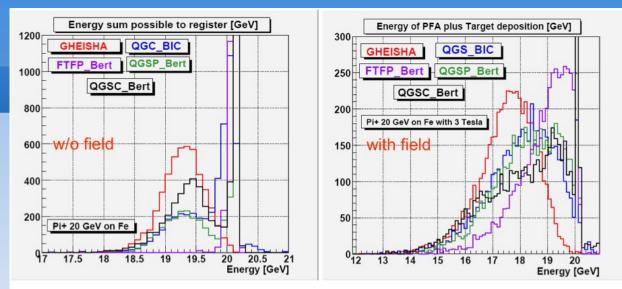
- Idea: test PFA algo with pseudo jets
 - simulation of target + combined instrument resolution of this experiment
- Toy Set-up MC
 - ▶ TPC in a coil + 120° of ECAL+HCAL


KEY QUESTION: is the expected pseudo-jet energy resolution of this experiment sufficient to validate PFLOW ?


Simulation of various models

Simulate the energy spread and particle multiplicity at various stages:

- after the first nuclear interaction in the target
- leaving the target
- at the calorimeter front
- of the reconstructed PFLOW objects (PFO)
- Thorough analysis:
 - Energy conservation in MC
 - **20 GeV** π on Fe \rightarrow effect of isotopes
 - ► after a thin target (~1 IA in target)
 - Multiplicity vs Physics list
 → large spread
 - E spectrum:
 - <E>_TB ~ 1 GeV vs 5-10 GeV @ ILC
 - \Rightarrow Higer energy needed


zoom in the total energy range

Vincent.Boudry@in2p3.fr

Calo front face

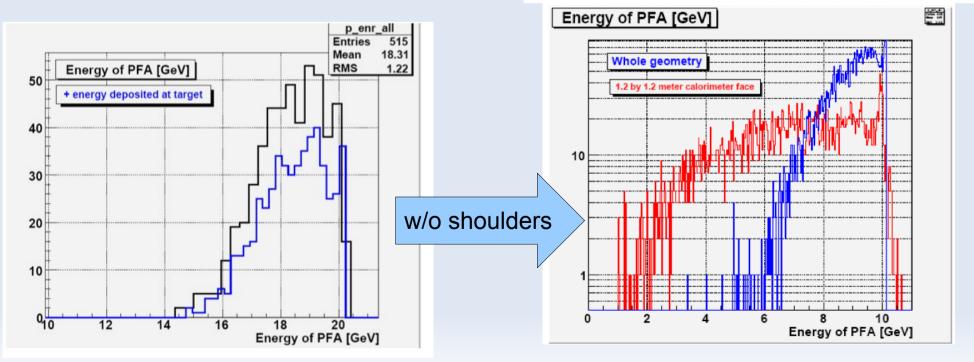
- 1.5-3 GeV loss with/wo B
- 5 most energetic particles in jets
 - good agreement

Five most energetic particles

Some good news:

Spectra and angular distributions of the most energetic particles are in a rather good agreement for all GEANT4 physics lists

Vincent.Boudry@in2p3.fr


In calorimeter

- "Shoulders" are useful
- Reconstructed PFO
 - ► $\sigma(E)/E$ of 30%/ $\sqrt{E} \rightarrow 1.3$ GeV@ 20 GeV
 - seems feasible (for one model)
 - For a realistic setup (1 m³), no shoulder
 - ◆ 4 GeV spread → "HOPELESS"

Simulated events

Pion+; 20 [GeV]; 0.8 Tesla; Thin target. Energy lost in target = 1.818 [GeV]; Sum = 18.74 [GeV]; Sum of PFO energies = 16.93 [GeV]; E calo = 14.33 [GeV]

Conclusion

A combined calorimeter-spectrometer project is too large and too expensive to be realistic

Such a project will have a small running time because it needs small statistics to prove PFA

A device with smaller calorimeter will not be able to prove PFA

Some open issues for optimization studies could be:

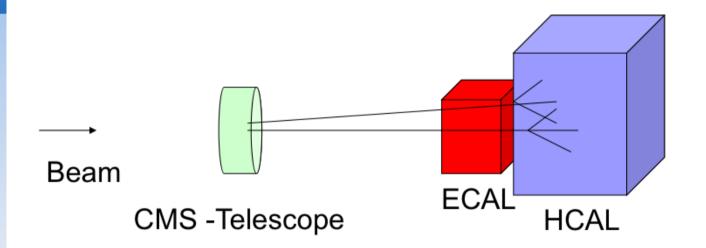
- replace large tracker with more compact silicon tracker
- add shoulder veto counters to simulation

In the end one has to unfold the "jet energy spread" by simulations

➔ Only indirect test of PFlow possible

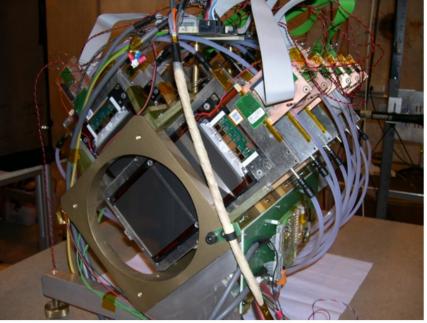
The real problem of this type of physics is to measure inelastic exclusive hadron cross-sections on nuclei for intermediate energy range

➔ Better design an ad hoc nuclear physics experiment


Combined test for Linear Collider

Imad Laktineh

Some ideas for a combined test


- Goal:
 - Compare data from different options for ILC detectors
 - need for common DAQ
 - Test different elemental particle configuration
 - Charged & neutral part together: \rightarrow target + B
 - Charged with same $E \rightarrow high$ intensity beam
 - Both together
- Setups
 - Tracker + ECAL + HCAL
 - High intensity beams @ SPS $\rightarrow 10^7$ part /spill (16s).
 - 5 MHz clock \rightarrow 8% pile-up
 - beam profile: $2 \times 2 \text{ cm}^2 \rightarrow 30 \times 30 \text{ cm}^2$
 - Trackers → telescopes:
 - EUDET 0.7×0.7 cm²; few μ m; 200 ns \int time
 - CMS : 10×10 cm²; 30µm; 100 ns seems better suited for this kind of combined tests


Charged particles with the same energy

→Variable distance to accommodate divergent beams

- \rightarrow Acquisition based on Xdaq system
- → Mechanical structure to be developed
- Optionnally with µVTX, TPC
 - need target
 - need B field

SPS/H4 line

Courtesy M. Alfonsi

- 1.4 T enough ? Calo inside ?
- Conclusions:
 - PFA Simple case study possible at low cost with existing instruments
 - More complex tests stil need further evaluation
- Discussion : what is needed to test PFA
 - 2 particle separation useful (vs soft pile-up)
 - ► Is it enough ?

Interesting session with advances in MC models Better MC absolutely needed for PFA studies