Latest Results, Status of Data Analysis

Jörg Behr (Hamburg University / DESY)

EUDET 2009

Geneva, October 2009

Outline:

- 1 Overview: Mimosa 26 Testbeam Campaigns
- 2 July Testbeam Results
- 3 September Testbeam Results
- 4 Summary

Overview: Mimosa 26 Testbeam Campaigns (1/2)

July 2009:

- three Mimosa 26 sensors as DUT
- six MimoTEL sensors as reference telescope
- SPS H6 beam: 120 GeV hadrons

Analysis:

- → data were treated as one telescope with 9 planes \Rightarrow all clusters were stored in one collection
- → this approach could be interesting for users if they want to analyse more than one DUT plane (*no gear modification needed*)
- → Mimosa 26 thresholds were set to 12

Overview: Mimosa 26 Testbeam Campaigns (2/2)

September 2009:

- upgrade of the telescope to six Mimosa 26 sensors (unfortunately only five could be used)
- SPS H6 beam: 120 GeV hadrons
- with beam a data taking peak rate of about 200 Hz was reached (limited by the beam)
- with an internal fixed TLU trigger rate: \approx 990 Hz
- 3 kHz function generator as TLU input: \approx 990 Hz

- data with basically three different threshold configurations were taken:
 - 12: 1.1 M events
 - 2 10: 1.5 M events
 - 3 8: 113000 events
 - $\Rightarrow \approx$ 2700000 events!

Eutelescope: Digital Fixed Frame Clustering

Integration of Mimosa26

- the Mimosa 26 data are integrated as zero suppressed data collections
- the new cluster type <u>EUTeIDFFCluster</u> was introduced (CoG shift etc. is available)
- a digital fixed frame clustering algorithm was implemented:

Clustering:

 \rightarrow for each hit pixel the number of neighbour pixels N is counted *(ignoring diagonal neighbours)*

L

2

1

- $\rightarrow\,$ the obtained list of seed candidates is sorted with decreasing N
- $\rightarrow\,$ the resulting list is processed starting from the seed candidate with the largest N
- $\to\,$ all hit pixels in a fixed $x\otimes y$ frame around the seed are put into the cluster and removed from the pixel collection
- → cluster filter processor: cut on the number of hit pixels inside the cluster (default 0)

July TB: Clustering

MimoTEL Sensors (right):

 \rightarrow reasonable seed and cluster $\frac{S}{N}$ spectra!

Mimosa 26 Sensors (bottom):

- → shown: number of hit pixels inside cluster (norm. to the number of single pixel cluster)
- → dominated by single pixel cluster
- → small differences visible

July TB: Clustering

- Mimosa 26 sensors
- 2D hit maps clearly show the trigger window!

July TB: Alignment and Track Fitting

Alignment:

- hit collections from all 6 MimoTEL and 3 Mimosa 26 sensors were used
- straight lines were fitted to all 9 planes
- alignment constants for shifts in *x*, *y* and rotations around *z* were simultaneous determined with *Millepede*

Track Fitting:

- the analytical fitter was used
- the three Mimosa 26 sensors were NOT included in the fit!
- observed shifts of the MimoTEL residual distributions (see plots):
 < 0.07µm (Telescope alignment was a success!)

MimoTELs in first telescope box!

July TB: Mimosa 26 Results (1/2)

DUT Treatment:

- Mimosa 26 data were not included in the track fit!
- a hit was assigned to a track if the distance was smaller than 100 μm

Mimosa 26 Efficiency:

- area limited by the size of the trigger window
- the efficiency is typically between 40% to 60%
- does not fit expectation for threshold 12
- still under investigation ...

July TB: Mimosa 26 Results (2/2)

Residual Distributions:

Mimosa 26 pixel pitch:

 $\rightarrow \ p = 18.4 \ \mu m$

Mimosa 26 resolution:

 $\rightarrow ~\sigma_{\rm M26}^2 = \sigma_{\rm obs}^2 - \sigma_{\rm tel}^2$

• telescope resolution (k: geometrical scaling factor):

$$\rightarrow \sigma_{\text{tel}}^2 = k \cdot \sigma_{\text{MimoTEL}}^2$$

Mimosa 26 Resolutions:

Sensor ID	σ_x	σ_y
Sensor 6	$5.45 \ \mu m$	$5.27 \ \mu m$
Sensor 7	$5.00 \ \mu m$	$4.88 \ \mu m$
Sensor 8	$5.97 \ \mu m$	$5.76 \ \mu m$

⇒ consistent with "number of pixels inside cluster"- plot!

July TB: Problems

- the *x* residual distributions are showing shoulders
- the y residuals are not affected!
- **during** one run it occasionally happened that the *x* coordinates of all pixels were shifted by **exactly** 1
- the pixel *x* coordinates of all three Mimosa 26 sensors were affected simultaneously
- one jump was found in the July data
- ⇒ residuals show sum of two Gaussians with exactly one pixel pitch difference of the mean values
 - presumably more difficult to see with the final telescope! :-(

September TB: First Results

- six Mimosa 26 sensors (5 were used in the analysis)
- analysis is still ongoing!
- all sensors were included in the fit
- most of the data are influenced by a sync. problem between the VME crates

Ongoing Data Analyses

Atlas Lucid	Marie GELIN(?), Igor Rubinsky(?)	mostly done?
DEPFET	Julia Fourletova(?)	
SILC	they have not asked for support yet	
FORTIS	Alessandro Caldarone(?)	ongoing
Peric, Takacs	Jörg Behr, Christian Takacs	done!
Atlas TRT		done (?)
Mimosa26	Jörg Behr	ongoing
Atlas 3D Pixel	Igor Rubinsky(?)	

- three Mimosa 26 sensors were investigated as DUT during the July testbeam:
 - \rightarrow observed resolution and expectation are compatible
 - \rightarrow efficiency needs further investigations
- the final telescope was tested in September:
 - \rightarrow as a first result resonable residual distributions were obtained

⇒The Eutelescope software is ready for Mimosa 26 data!