Energy resolution and dijet mass resolution

Ron Cassell PFA meeting 8/26/09

Motivation

- Jet energy resolution seems to be the "holy grail".
- Dijet mass resolution is more closely related to physics output.
- Better jet energy resolution => better dijet mass resolution ?? Not always.
- Can we understand this

Event sample

- ZZ->qqvv at 500 GeV Ecm.
- Bypass jet finding errors, combinatorics, neutrinos.
- <Generated event energy>(excluding neutrinos) = 221 GeV

• Start with sid02, and reconstruct the events with the LOI PFA.

ZZ->qqnunu: LOI recon: delta E, ct<.9

 $\sigma 90/E = 3.48\%$

ZZ->qqnunu: LOI recon: delta M, ct<.9

From gaussian fit: $\sigma/M = 5.86\%$

 $\sigma 90/M = 4.59\%$

- Use the same events, same detector, but do the reconstruction using only the calorimeters
- Cluster ReconstructedParticles: Use DT clusterer, make cores from clusters >=10 hits, add energy of clusters < 10 hits to nearest core, add muon hits to nearest core, make massless particles from cores.

ZZ->qqnunu: Cluster recon: delta E, ct<.9

From gaussian fit: $\sigma/E = 4.56\%$

 $\sigma 90/E = 3.59\%$

ZZ->qqnunu: Cluster recon: delta M, ct<.9

From gaussian fit: $\sigma/M = 7.93\%$

 $\sigma 90/M = 6.31\%$

sid02_scint

- Don't have PFA results for sid02_scint. Ray?
- From sid01 studies, ~10% better performance with scintillator HCAL
- Do reconstruction with calorimeters only on sid02_scint, same as sid02 only require >= 20 hits for a core.

sid02_scint: ZZ->qqnunu: Cluster recon: dE

From gaussian fit: $\sigma/E = 3.28\%$

 $\sigma 90/E = 2.59\%$

sid02_scint: ZZ->qqnunu: Cluster recon: dM

From gaussian fit: $\sigma/M = 6.79\%$

 $\sigma90/M=5.37\%$

- Look at dual readout simulation (from Steve)
- Don't have delta E,M plots. Could try to make some estimates, but should probably wait for the plots.

Resolution fits for single pions

Consistent fits for p1, p2, p3, and p4 corrected pions

Effect of lower thresholds on Particle Flow?

DiJet Mass measurements with C/S, B-field corrections

Cerenkov, Bfield Corrected Dijet Mass

Dual readout

- Delta E plot for these events should blow away sid02.
- Delta M plot will be interesting.

Detector/	Single gauss	Single gauss	Rms90	Rms90
Necon	0/ <e></e>	0/<1VI>	0/<⊏>	0/<10/>
Sid02	4.37%	5.86%	3.48%	4.59%
LOI PFA				
Sid02	4.56%	7.93%	3.59%	6.31%
Cluster				
Sid02_scint	3.28%	6.79%	2.59%	5.37%
Cluster				
DR				

Summary

 Would be interesting to understand mass resolution: How much can be recovered from Eflow, field corrections? Why not a more direct correlation with energy resolution?