

Report for ILC-PAC

SCRF

Akira Yamamoto, Marc Ross, and Nick Walker

ILC-GDE Project Managers

Prepared for ILC-PAC to be held at POSTECH, Nov. 2, 2009

A, Yamamoto, 09-11--02

ILC-PAC: SCRF Report

1

Parameter	Value
C.M. Energy	500 GeV
Peak luminosity	$2x10^{34}$ cm ⁻² s ⁻¹
Beam Rep. rate	5 Hz
Pulse time duration	1 ms
Average beam current	9 mA (in pulse)
Av. field gradient	31.5 MV/m
# 9-cell cavity	14,560
# cryomodule	1,680 •
# RF units	560

IC TDP Goals of ILC-SCRF R&D

Cavity Field Gradient (S0)

35 MV/m in vertical test

Cavity-string Assembly in Cryomodule (S1)

- <31.5 MV/m> in cavity string test in cryomodule
 - To be re-evaluated in preparation for SB-2009 proposal.
- Efficient R&D with "Plug-compatibility" for
 - improvement and 'creative work' in R&D (TDP) phase

Accelerator System with SCRF (S2)

Beam Acceleration with SCRF Accelerator Unit

Need to discuss an reliable, operational field gradient including adequate HLRF/LLRF control margin for stable operation

Industrial Production R&D

Preparing for production, quality control, cost saving
 "Plug compatibility" for global sharing in production phase

IC Global Plan for SCRF R&D

Year	07	200	2009	2	010	2011	2012		
Phase		Т	DP	-1			2		
Cavity Gradient in v. test to reach 35 MV/m		→ Y	ïeld	50%		1	Yield	90%	
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Glob asse (DESY,	al ef mbly ^{FNAL}	fort for and to , INFN, KI	ing				
System Test with beam acceleration		FLASH (DES STF2 (K				ESY) , NML (FNAL) (KEK, extend beyond 2012			
Preparation for Industrialization				Р	rod	uctio	on Techn R&D	ology	

Progress Towards High-Gradient Yield reported at PAC and ILC-PAC, Vancouver, May, 2009

Evaluation of the Cavity Performance

Original S0 concept and approach:

- Surface can be reset according to the EP process
 - multiple processes may be integrated for statistics.
- Several-year experiences, however, show:
 - Repeating processes may cause degradation
- Processing and Test recipe has been updated
 - Complete the process and test only with the first cycle (in XFEL)
 - no further processing if the results are acceptable

Revision required for the concept and 'yield' definition

- Production yield may be more important
- Common means for collection/evaluation of the data required

New effort started by the Global Database Team

- Try a new approach to be more appropriate
 - Production yield with the first/second pass RF test

Creation of a Global Database for Better

- Global Data Base Team formed:
 - Camille Ginsburg (Fermilab)
 - Team Leader & Data Coordination
 - Rongli Geng (JLab)
 - GDE-SCRF Cavity TA Group Leader
 - Zack Conway (Cornell University)
 - Sebastian Aderhold (DESY)
 - Yasuchika Yamamoto (KEK)
- Activity Plan/Schedule
 - July 2009:
 - Determine DESY-DB to be viable option,
 - Sept., 2009: (ALCPG/GDE)
 - Dataset, web-based, support by FNAL-TD or DESY
 - Some well-checked, easily explainable, and near-final plots, available,
 - Nov.- Dec., 2009:
 - Finalize DB tool, web I/F, standard plots, with longer-term plans

Standard Process Selected for Further Yield Plot

	Standard Cavity Recipe
Fabrication	Nb-sheet (Fine Grain)
	Component preparation
	Cavity assembly w/ EBW (w/ experienced venders)
Process	1st Electro-polishing (~150um)
	Ultrasonic degreasing with detergent, or ethanol rinse
	High-pressure pure-water rinsing
	Hydrogen degassing at > 600 C
	Field flatness tuning
	2nd Electro-polishing (~20um)
	Ultrasonic degreasing or ethanol
	High-pressure pure-water rinsing
	Antenna Assembly
	Baking at 120 C
Cold Test (vert. test)	Performance Test with temperature and mode measurement (1 st / 2 nd successful RF Test)

ir

Example New Yield Plot from the 1st Successful Vertital RF Test

- Vertical axis: fraction of cavities satisfying criteria where:
 - Denominator (logical and of the following):
 - Fabricated by ACCEL or ZANON
 - Delivered to labs within last 2-3 years
 - Electro-polished at DESY and JLab
 - Fine-grain material
 - Numerator (logical and of the following):
 - Denominator
 - Accepted by the lab after incoming inspection
 - 1st successful vertical RF test,
 - excluding any test with system failure, has max gradient
 > (horizontal axis bin) MV/m;
 - ignore Q-disease and field emission (to be implemented in future)
- Horizontal axis: max gradient MV/m
- Exclude cavities which are work-in-progress, i.e., before rejection or 1st successful RF test

Note: These are results from the vertical CW test at DESY and JLab

• Note:

Yield Plot from the 1st Vertical Test

- V. axis: Successful Yield
 - Denominator:

İİL

- Fabricated by <u>ACCEL/ZANON</u>
- Delivered within last 2-3 years
- EP'ed at DESY and JLab
- Fine-grain material
- Numerator:
 - Accepted by the lab
 - 1st successful vertical RF test,
 - excluding any test with system failure
 - ignore Q-disease and field emission

- exclude cavities which are work-in-progress,

- i.e., before rejection or 1st successful RF test

- » (to be implemented in future)
- H. axis: Max. gradient (MV/m)

Electropolished 9-cell cavities

Note: CW test at

DESY and **JLab**

New Production Yield after 1st and 2nd Pass (RF) Test

Alternate Yield Plot

Yield is estimated assuming a specific lower cut-off in cavity performance, below which cavities are assumed 'rejected'.

Error bar is +/- one RMS value (standard deviation of the polulation) of the remaining (accepted) cavities (gradient above cut-off).

Additional bars (min, max) inidcated the minimum and maximum gradients in the remaining (accepted) cavities.

.

A, Yamamoto, 09-11--02

AES: 1st RF Test following (1st) Light EP in the 2nd Pass with JLab/FNAL Collaboration

A, Yamamoto, 09-11--02

A, Yamamoto, 09-11--02

Achievement with Contribution of basic R&D for surface conditions

A, Yamamoto, 09-11--02

Eacc,max (cell) by Passbands modes Meas.

	Cell 1&9[MV/m]	Cell 2&8[MV/m]	Cell 3&7[MV/m]	Cell 4&6[MV/m]	Cell 5[MV/m]	Comment
π Initial	33.47	33.47	33.47	33.47	33.47	Radiation Limit : Heat@9cell Qo=4.79E9, Po=246W
Final	33.59	33.59	33.59	33.59	33.59	Xray over range Radiation Limit : Heat@9cell Qo=4.82E9, Po=247W Xray over range
8 π /9	33.32	29.65	21.99	12.32	0	Quench/selfpulse : Heat@9cell Qo=5.51E9, Po=103W X-ray 4.38mSv/h
7π/9	34.19	18.12	6.84	26.33	36.58	Quench/selfpulse : Heat@9cell Qo=5.78E9, Po=114W X-ray 0.61mSv/h
6л/9	33.67	0	33.67	33.67	0	Quench/selfpulse : Heat@9cell Qo=5.42E9, Po=136W X-ray 0.62mSv/h
5π/9	33.51	22.79	39.54	6.70	42.56	Quench/selfpulse : Heat@5cell Qo=4.82E9, Po=191W X-ray 0.23mSv/h
4π/9	30.14	39.48	17.18	43.70	0	Power Limit : No heat Qo=3.96E9, Po=260W X-ray 0.95mSv/h
3π/9	17.45	34.90	17.45	17.45	34.90	Quench/selfpulse : Heat@5cell Qo=8.76E9, Po=65.7W X-ray 0.05mSv/h
Eacc,max	34.2	39.5	39.5	43.7	42.6	Ave. 39.6MV/m

• Emax limited by Cell 1 & 9

A, Yamamoto, 09-11--02

Local grinding for Surface Repairing

Defect removal test is under development using local grinder

Progress and Prospect of iii Cavity Gradient Yield Statistics

	PAC-09 Last/Best 2009-05	FALC 1 st Pass 2009-07	ALCPG 2nd Pass 2009-10	To be added (2009-11)	Coming Prod. Y. (2010-06)	Research cavities
DESY	9 (AC) 16 (ZA)	8 (AC) 7 (ZA)	14 (AC/ZA)	10 (Prod-4)	5	8 (large G.)
JLAB FNAL/ ANL/ Cornell	8 (AC) 4 (AE) 1 (KE-LL5) 1 (JL-2)	7 (AC)	7 (AC)	~ 5 (AE)	12 (AC) 6 (AE)	6 (NW) (including large-G)
KEK/ IHEP				5 (MH)	2 (MH)	~5 (LL) 1 (IHEP)
Sum	39	22	21	20	25	~ 20
G-Sum				41	66	

Statistics for Production Yield in Progress to reach > 60, within TDP-1. We may need to have separate statistics for 'production' and for 'research', A, Yamamoto, 09-11--02 **ILC-PAC: SCRF Report** 22

ic Cavity Gradient Study - Summary

- Yield at 35 MV/m (w/ established vendors: RI, Zanon)
 - 22 % at 1st pass (statistics 22)
 - 33 % at 2nd pass (statistics 21, as of 2009-07))
 - Average Gradient reaching 30 MV/m
 - DESY Prod-4 data to be added, (10 more statistics)
- New statistics coming (w/ potential vendors)
 - AES: to be counted from #5 (to be confirmed)
 - MHI: to be counted from #5 (to be confirmed)
- Selecting statistics needed for 'Production Yield'
 to evaluate readiness of industrialization and cost

Note: Numbers of Cavities for 'gradient research': need to be separately counted.

A Proposal for Re-baseline Cavity Gradient and Yield, in TDP-2

- Operational field of <31.5 MV/m > (@ Q0 = 1E10)
 - Keep it, as the 'averaged field gradient' in the ILC operational condition with cryomodule string, and
 - Accept the gradient distribution of (~ 20 % (b/w 25 38 MV/m) in operation (note: exact number to be further well discussed)
 - See the recent progress at DESY PXFEL cryomodule test result
- Maximum gradient of 35 MV/m (@ Q0 = 8E9) in vert. test
 - keep our R&D goal of the yield of 90 % at 35 MV/m, as a target, and
 - Recognize that the yield may be acceptable to be ~ 50 % with the +/-20 % distribution (i. e., b/w 28 and 42 MV/m) of the gradient.
- Production Yield
 - the yield of 90 % at the 28 MV/m, and 50 % at 35 MV/m may meet the the ILC operational field gradient with a margin of 10 %, by

• taking the above model with the distribution of +/- 20 %: A, Yamamoto, 09-11--02 **ILC-PAC: SCRF Report**

Global Plan for SCRF R&D

Year	07	2008	09	2010		2011	2012		
Phase		Т	DP-1				2		
Cavity Gradient in v. test to reach 35 MV/m		→ Yi	eld 5	0%		→ Yield 90%			
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Globa assen (DESY, F	n <mark>l effo</mark> i nbly a ⁼NAL, IN	ing					
System Test with beam acceleration		F	LASF ST	H (DESY) , NML (FNAL) TF2 (KEK, extend beyond 20					
Preparation for Industrialization			Ρ	rodu	uctio	on Techn R&D	ology		

S1 Goal: Achieved at DESY/XFEL

Around the World

İİL

Cryomodule surpasses ILC gradient test

NewsLine

European-XFEL cryomodule using SCRF technology sets new record

The cryomodule that set the world gradient record in the testbench at DESY

A cryomodule prototype for the European XFEL has set the world gradient record for cryomodules built with superconducting radiofrequency technology, reaching an average accelerating gradient of more than 32 megavolts per metre (MV/m) in recent

FLASH 30MV/m

Cavity tests:

- Module will see beam in FLASH in 2010 (av. of 30MV/m) - Cryostat (cryomodule cold-mass) contributed by IHEP

TTF/FLASH Modules

A, Yamamoto, 09-11--02

S1-Global in Progress

- Global effort for cryomodule test for ILC operational goal
 - INFN: Cryomodule
 - DESY: 2 cavities
 - FNAL/JLab: 2 cavities
 - KEK: 2 cavities, Cryomodule

A, Yamamoto, 09-11--02

ILC-PAC: SCRF Report

INFN/KEK Crew at Zanon S1, Global Cryomodule Completion in Dec. 2009

Eight Candidate Cavities for S1-Global

- 1. MHI-05 (27.1 MV/m);
- 2. MHI-06 (27.7 MV/m);
- 3. MHI-07 (33.6 MV/m);
- 4. MHI-09/08 (25.0/?? MV/m);
- 5. Zanon-108 (31.3 MV/m);
- 6. Zanon-109 (30.7 MV/m);
- 7. AES-002 ? (32.8 MV/m) ;
- 8. ACCEL-8 ? (30.6 MV/m);

Slide-Jack tuner (center) Slide-Jack tuner (center) Slide-Jack tuner (end) Slide-Jack tuner (end) Saclay tuner (end) Saclay tuner (end) Blade tuner (center) Blade tuner (center)

Candidates considered, as of Oct. 26, 2009 MHI (Japan), Zanon (Italy), AES (USA), ACCEL/RI (Germany) Expected Average Gradient: ~ 30 MV/m **Cavity Assembly for S1-Global**

Month	Month		1				2			3				4			5			6		7	1	
Date	Date	- 4	11	18 :	25	1	8 15	22	1	8 1	5 22	29	5 12	19	26	3 1	0 17	24 31	7	14 21	1 28	5 12	19	26
Cavity	Comments										G	DE		TT	0	G.W.		IPAC					1	Ka
											Ве	eijing		Fer	mi			Kyoto					1	Hir
Cryomodule-A (KEK)	Preparation					Prep	<mark>ara</mark> tion																	
	Class 10						010																	
	Class 1 000							010	000															
KFK	Outside of C.R.			C	24	rin			Out	side														
••=••	Under the GRP				74		'9			u-GRI	P													
	Cold-mass Assembly			As	S	em	ıblv	1					Cold-r	nass	Ass <mark>.</mark>									
	Installation in Tunnel															Ins, ir	Tun	nel						
								Гн	ne	r														
Cryomodule-C (FNAL, DESY)	Preparation		Pre	parati	ion			ns	sta	Illa	tio	n												
	Class 10			010												K	ΚEI	K Wa	arr	n				
DESY	Class 1 000				01 Q	00										6								
	Outside of C.R. 💽					Outs	side									U U	νοι	apie						
	Under the GRP 🤍	ΓΠ	Ig				u-GRP									1.	net		tio	n				
AFINAL	Cold-mass Assembly co	on	nh	j.		Ĺ	<mark>/p</mark> ld=m	iass j	Ass.								13	lana						
	Installation in Tunner 55			ייע יי		ľ				Ins, in	Tun	nel												
					u	ne	r &																	
Cryomodule- A & C	Installation of Warm Coupler						0											Warm 0	oupl	er				
	Cooling Down			N	/ 1ą	Ig .	Sn	Ie	a	U	-3	YY	var	m					Coo	<mark>l do</mark> wi	n			
	Experiment at 2 K					to	Hot			0			r				_			Lo	iw Po	wer RF	Exp	
	Warming Up				13	bld	inal		1	Ψ	Jul	סיק	•										Warr	n u
	Coupler Aging									In	sta	IIIa	tio	n										

ilc....

Cryomodule Tests Objectives

Global Plan for SCRF R&D

Year	07	2008 20			9	2010		2011	2012		
Phase			P-1			TDP-2					
Cavity Gradient in v. test to reach 35 MV/m		→ Yield 50%						→ Yield 90%			
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK)									
System Test with beam acceleration		FLASH (DESY STF2 (KE					Y) , NML (FNAL) EK, extend beyond 2012)				
Preparation for Industrialization					Pr	odu	ictio	n Techn R&D	ology		

Global SCRF Technology: EUROPE

S2: TTF/FLASH 9mA Experiment

Successfully completed 2-week dedicated experiment

A, Yamamoto, 09-11--02

with RF unit at Fermilab and KEK in TDP-2

Quadrupole Development at FNAL

T4CM BPM

T4CM QUAD

Note: Alternate effort with SLAC/SIEMAT collaboration progressed

Novel RF Distribution Concepts

A, Yamamoto, 09-11--02

IC SCRF R&D Plan at Fermilab from P5 talk by S. Holmes

			-			
L	FY08	FY09	FY10	FY11	FY12	FY13
ILC C+CM	CM1	CM2	С (Туре	M3 IV)	CM4 rf unit syst.tst	
ILC RF Power		MBK	PFN nodulator			
SRF Infra.				NML complete		CAF complete (1 CM/month)
HINS				60 MeV beam tests		
Project X		CDR	Gradi	FE decision ent decision aseline docs	rf unit sys.tst	
	CD-0		CD-1	CD-2/3a	2	
P5, 1/31/08 - S. Hol	mes					Page 38

Cavity- and Cryomodule-String Program (S1G, S2) at KEK, Japan

C. Year	2008	2009	2010	2011	2012	2	201	3	2014		
Cavity String (S1-Global)	Cavity	>>	Ins Test								
Cryomodule String Test (S2)	*High Pre	High Pressure Code Regulation/Stamp to be applied									
Quant. Beam* (Compact L.S.)		Cavity	>>	Inst.	Test						
Cryomodule 1*		Cavity	>>	>>		Ins	γT				
Cryomodule 2,3*			Cavity	>>	>>			Ins	Ins & T		
	Technical Design Phase Development to be continued										
R&D/Prepare for Industrialization											

Global Plan for SCRF R&D

Year	07	2008 2009				010	2011	2012			
Phase		Т	DP	-1		TDP-2					
Cavity Gradient in v. test to reach 35 MV/m		→ Y	ield	50%	\uparrow	Yield	90%				
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Globa assei (DESY,	al ef mbly ^{FNAL}	fort for y and to ., INFN, KI	ing						
System Test with beam acceleration		FLASH (DESY STF2 (KE					SY) , NML (FNAL) EK, extend beyond 2012)				
Preparation for Industrialization					Mass-Production Technology R&D						

Toward Industrialization

- Global status of Industries
 - Research Instruments (ACCEL) and Zanon in Europe
 - AES, Niowave, PAVAC in Americas
 - MHI in Asia

Project Scope			
SNS	~ 110	3years	< ~ 1 cavity / week
Euro XFEL	~800	2 years	~1 cavity / day
Project X	~400	3 years	~2 cavities/ week
ILC	~15,500	4 years	~20 cavities / day
(÷ 3 regions			~7 cavities / day)

- Industrial Capacity: status and scope
 - No company currently ready for the ILC capacity
 - Need to understand what is required (and cost) by 2012

Two Pushes Ahead

ir

SC Cavity Manufacturers: 2009

Americas: AES NIOWAVE PAVAC

Notes: AES: Advanced Energy Systems RI: Research Instruments (previously, ACCEL) MHI: Mitsubishi Heavy Industries

A, Yamamoto, 09-11--02

ILC-PAC: SCRF Report

. . .

HITACHI (expected)

TOSHIBA (expected)

Asia

MHI

IC Prepare for ILC-scale Industrialization

- Learn previous efforts and current status:
 - Industrialization study for TESLA (1990's)
 - Recent R&D progress (in ~ 10 years)
 - Current status in industries (in progress)
- Learn industrialization at XFEL Project
- Prepare for ILC-scale industrialization
 - Encourage Laboratory-hosted Pilot Facilities/Plant, particularly important at KEK,
 - to study cost effective production and quality control with participation of industries,
 - Prepare for cost-effective production and quality control in cooperation with industries,

Plan Proposed for a Pilot Facility at KEK for SCRF Cavity Production R&D

KEK-STF: Long Term Plan

IC Plug-compatibility in R&D and Construction Phases

R&D Phase

- Creative work for further improvement with keeping replaceable condition,
- Global cooperation and share for advanced technology

Construction Phase

- Prepare for various organization scheme for the ILC global collagoration including 'in-kind contribution,
- Keep competition with free market/multiple-suppliers, and effort for const-reduction, at least within a region
- Maintain "intellectual" regional expertise base
- Encourage regional centers for fabrication/test facilities with accepting regional features/constraints

Plug-compatible Conditions

Item	Can be flexible	Plug-comp.
Cavity shape	TeSLA/ LL/RE	
Length		Fixed
Beam pipe flange		Fixed
Suspension pitch		Fixed
Tuner	Blade/Jack	
Coupler flange (warm end)		Fixed
Coupler pitch		fixed
He –in-line joint		TBD

Plug-compatible interface nearly established

Study of the "plug-compatible" cryomodule cross-section

Two shields model based on TTF-III

One shield model to save fabrication cost⁵².

081209

ILC Global Design Effort

- Plug Compatibility could be applied from a level of the whole cryomodule, to the smallest component.
- During R&D, it is appropriate to set boundaries such that technical components can be most efficiently addressed.

Transition to Construction Project

N. Walker - ILC08

A Satellite Meeting at IPAC-2010

Industrialization of SCRF Cavities

Date : May 23, 2010, a full-day meeting, prior to IPAC-2010

Place: Int. Conf. Center, Kyoto, Japan

Organized by: ILC-GDE Project Managers,

Objectives and Plan:

- To discuss and exchange information on preparation for the 'ILC SCRF Cavity' industrialization between industries and laboratories,
- Industrialization plan to be reported by laboratories, and comments/advices given by industries,

Announcement sent/made to major cavity venders, RI, Zanon, AES, Niowave, PAVAC, MHI, other SCRF industries, and ILC-SCRF institutions,

Summary

Progress in Phase-1:

- 35 MV/m with yield 50 % in surface process
 - 1st pass: 22 %, 2nd pass 33 % w/ established vendor's cavities,
 - Cavities with potential vendors are coming,
- 31.5 MV/m with the cavity-string in a cryomodule
 - Achieved with FLASH Prototype Cryomodule Test (> 32 MV/m)
 - To be realized with a global effort (S1-Global): KEK, FNAL, DESY, INFN

Plan for Phase-2:

- 35 MV/m. to be kept as a R&D goal in vert. test,
- Re-evaluation of the operational gradient for SB2009 proposal including adequate operational margin (H/LRF),
- Beam acceleration with the operational field gradient,

We aim for

- Global R&D efforts with keeping "plug-compatibility"
- Cooperation of world-wide Institutions and Industries
 - to prepare for industrialization: quality control and cost saving.