

Test Facilities

CESRTA

ATF

ATF2

Kaoru Yokoya PAC Review, PAL, Korea, Nov.2.2009

Critical Items of Risk Mitigation

- Damping Rings
 - Ultra-low emittance → ATF, CESRTA
 - Fast kicker → ATF
 - Fast ion instability → ATF
 - Electron cloud → CESRTA
- Beam Delivery System
 - Final Focus System integration → ATF2
 - Small spot
 - Bunch stabilization
 - Final quads

ILC Damping Rings

	RDR	SB2009	
Circumference	6476 m	3238 m	
Number of bunches	2625	1312	
Harmonic number	14042	7021	
Bunch population	2x10 ¹⁰	2x10 ¹⁰	
Average current	400 mA	400mA	
Extracted (normalised) emittance $\gamma \varepsilon_x \times \gamma \varepsilon_y$	8 μm × 20 nm	8 μm × 17 nm?	
Bunch length (rms)	9mm	6 mm	
Bunch distance	6.16ns	6.16ns	
Kicker repetition freq.	2.7MHz	1.4MHz	
Total length of wigglers	216m	78m	

CESR-TA

- Electron cloud is one of the highest risk factor for ILC
- Study at CESR started last year
 - Evolution of electron clouds under various cloud-mitigation techniques
 - chamber coatings (TiN, alpha carbon)
 - clearing electrodes
 - grooved chambers

can be monitored in various magnetic fields: drift, dipole, quadrupole, wiggler

- World-wide collaboration
 - Not only for ILC (KEKB, CLIC, etc)
- 2 Runs (#3,#4) since Vancouver PAC

ilc

Run#3

- May 12→Jun.16
- Major Activities
 - Instrumentation Commissioning
 - BPM system
 - xBSM including first single-pass measurements
 - 4ns Feedback (DIMTEL)
- L3 EC Hardware
 - SLAC Chicane and EC chambers commissioned
- Mitigation Studies
- CesrTA 5 GeV Optics

	2008		2009					2010			
	Apr May Jun Jul Aug	Sep Oct Nov Dec	Jan Feb Ma	r Apr May Jun	Jul Aug Se	p Oct Nov D	ec Jan Feb	Mar Apr May Ju	ın Jul Aug Se		
Ring Reconfiguration							i.	EX	ACT		
Instrumentation & Feedback Upgrades								SCH	EDULE		
EC Mitigation Development & Testing									BD		
Downs and Recovery	Down 1 2	100	3		1						
CesrTA Running Periods	Run 1	2a	2b	3	4	5	- 10	3 000 000 000 000 000 000 000 000 000 0			
CHESS Runs	1	2		3		4	5	-45-54-54-54-54-54-54-54-54-54-54-54-54-	7		
Legend:	Down Period		Орег	ations and Ex	periments						
	Machine Recov	ery	CHE	SS Tune-Up/0	perations						

Upgrade during Down#4

- June 16-July 23
- xBSM upgrade Electron line deployment
- New EC vacuum chambers
 - Wiggler chamber with groove mitigation (CU-KEK-LBNL-SLAC)
 - Upgraded RFA detectors (in wiggler, Q15E/W chambers and quadrupole chamber)
 - Diagnostic quadrupole chamber for L3 experimental region
 - Amorphous Carbon chamber (CERN) in Q15W experimental section
 - Grooved chamber with TiN coating in L3 Chicane (SLAC)
- EC solenoid windings on ~80% of CESR drift region
- Almost all reconfiguration works finished

Run #4

- Aug.31-Sep.8
- Electron Cloud Build-up & Mitigation
 - Tests of new EC-mitigating vacuum chambers
 - Wiggler chamber with grooves (CU-KEK-LBNL-SLAC)
 - Amorphous carbon coated chamber (CERN)
 - Grooved dipole chamber (SLAC)
 - Diagnostic quadrupole chamber
- Beam Size Monitors
- High energy x-ray coded aperture optics (4-5 GeV) tested for x-ray beam size monitor
 - Commissioning of electron beam x-ray line underway
 - Upgraded vertical polarizer and interferometer setups for visible light beam size monitors
 - Bunch-by-bunch single-pass beam size measurements for EC instability studies
- Ring Optics Commissioning
- Low Emittance Tuning
 - Digital BPM System commissioning (4ns bunch spacing)

Run #5 Planning

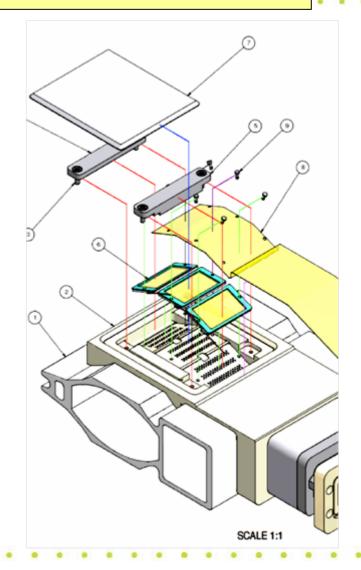
- Nov.17 Dec. 23
- Short down preceding the run
 - Install new diagnostic chambers
 - Q15 TiN on Al chamber for tests in CESR Arcs
 - Quadrupole chamber with mitigation
 - Install supporting hardware
 - Additional TE Wave pickups to allow horizontal and vertical polarization measurements in L3. Also, dedicate pickups in chicane for local (resonance) measurements
- Nov: focus on establishing machine conditions and commission new instrumentation
- Dec: Focused experimental period
 - Particular focus on low emittance tuning and beam dynamics studies

2010 Schedule

- Remaining runs
 - Run#6 (early spring)
 - Run#7 (~Sept.2010, final run)
- Major tests
 - Wiggler with clearing electrode
 - NEG test in L3 Experimental Region
 - Emittance dilution at ultra-low emittance
- Reflect EC study to ILC DR design

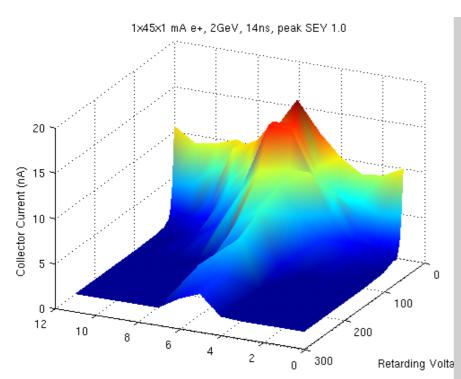
Possible Extension of the Program

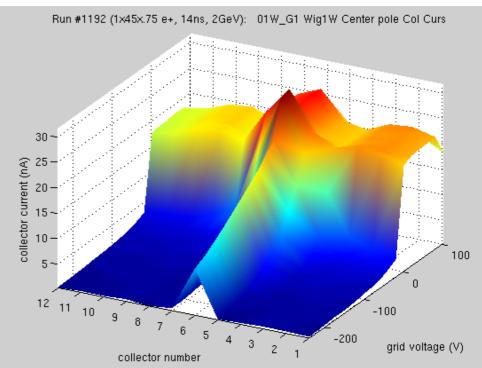
- Submitting a proposal to the NSF for continued accelerator R&D funding for 2011- 2013 (somewhat smaller scale than now)
- NSF Site-Visit to Cornell scheduled for December 2-3, 2009


Comparison with Simulation

- CESRTA does not exactly reproduce ILC DR parameters
 - e.g., $\varepsilon_x \sim 40$ nm @5GeV (1nm in RDR) ($\varepsilon_x \sim 2.5$ nm @2.08GeV)
- Comparison with simulation is essential
- Major measurement items for comparison
 - RFA (Retarded Field Analyzer)
 - TE Wave measurements
 - Tune-shift

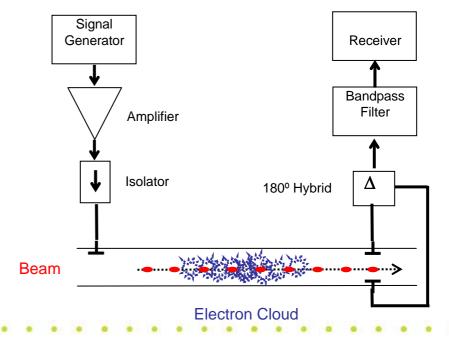
RFA


- Measure the energy spectrum of the timeaverage cloud current density hitting the chamber wall
- Can be placed in drifts, dipoles, quadrupoles, wigglers
- However, it influences the behavior of electrons
- → need modelling
- → include into simulations



Example: RFA in Wigglers

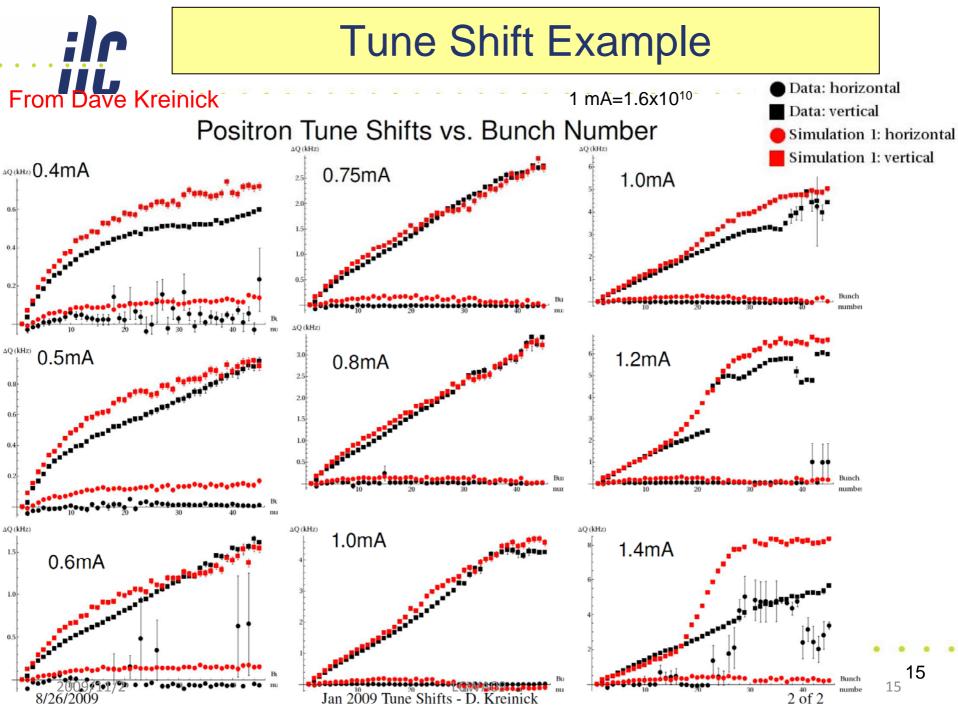
- Done with wiggler (pole center) RFA model in ECLOUD
 - Performs analytic calculation when macroparticle hits in the RFA region
 - Assumes macroparticles don't move between beam pipe holes
 - Includes SEY on the retarding grid
 - Produces results similar to data



TE Wave Measurement

- Electron cloud changes the wave number of EM wave propagating along chamber
- Beam gaps create
 phase shift modulation
 → frequency sideband
- Sideband intensity related to cloud density

$$k^2 = \frac{\omega^2 - \omega_c^2 - \omega_p^2}{c^2}$$


Plasma frequency: contains cloud information

Bunch Tune Shift

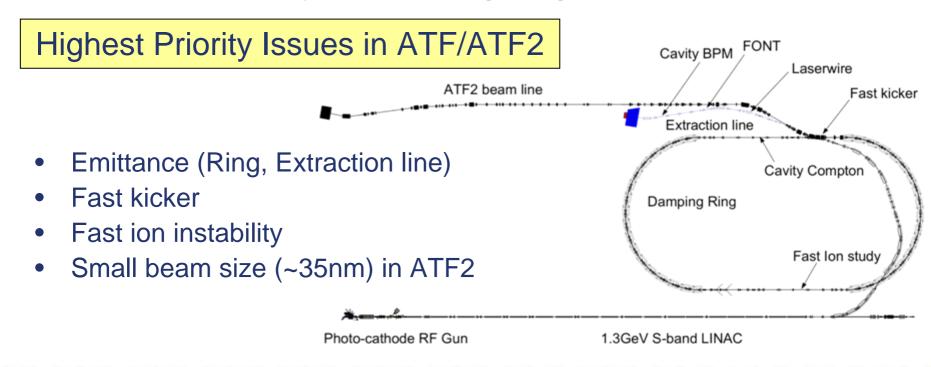
- Electron cloud brings about bunch-by-bunch betatron tune shift
- Good probe of the electron cloud density
- Integration over the ring (not a local measurement of the cloud density)
 - Need a model of entire ring

EC Mitigation Methods

- Various EC mitigation methods compared
- Tentative conclusion
 - Drift space
 - TiN and carbon coating better than aluminum (but only slightly than copper)

Dipole

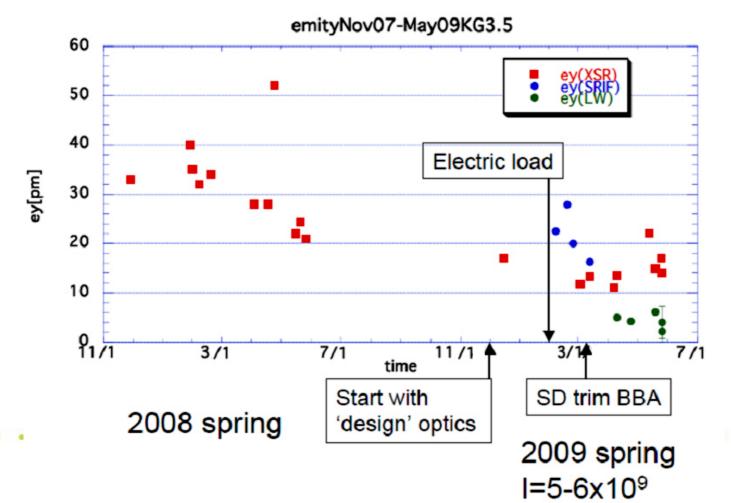
- TiN coating is very effective compared to Al
- TiN coated grooves are even better


Wiggler

- Groove is the most effective
- clearing electrode in a wiggler also planned

ATF

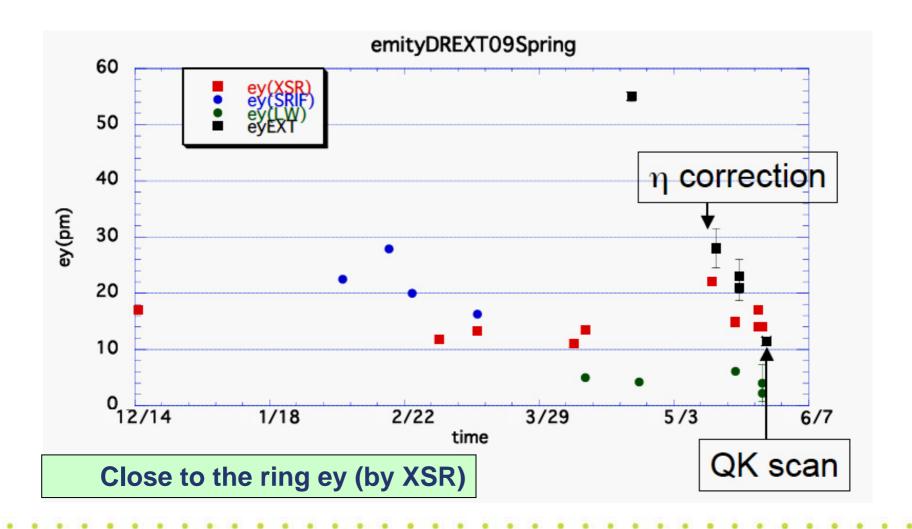
- Built in 1993 as prototype of JLC-DR, international MoU in 2005
- Achieved ~4pm vertical emittance emittance
- Continue to be a good test bench for ILC-DR
- Extended with ATF2 for R&D of final focus system
 - International project from the beginning


Emittance in ATF

- Reached the world smallest emittance $\varepsilon_v = \sim 4$ pm in 2003
- No strong motivation to improve the emittance since then
- $\varepsilon_{\rm v} = 20 \sim 30 \, \rm pm$ in early 2008
- Now a better emittance is required
 - ATF2 goal σy*=35nm is based on ε_v = 12pm
 - $\epsilon_{\rm v}$ < 10pm needed for fast ion study
 - ILC DR demands ε_{y} = 2pm
- Efforts of emittance improvement since 2008
 - Re-alignment
 - BPM upgrade done for 20BPMs, eventually all 96BPMs
 - Corrections
 - Dispersion correction, Coupling correction, β beat correction using Q trim
- Emittance measurement systems
 - SR Interferometer
 - Fast (~5ms), ~5-6 μm can be measured, mechanical vibration
 - XSR monitor
 - ~20ms, ~5-6 μm can be measured
 - Laser wire
 - Slow (a few 10's of minutes), Design 6.5 μm but ~1 μm by higher mode

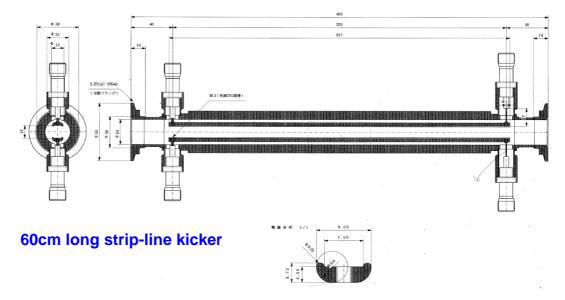
Measured DR Emittance

- $\varepsilon_v = \sim 12$ pm by XSR monitor
- Laser wire gives smaller emittance by about factor
 2 (need to reduce the waist size by higher mode)



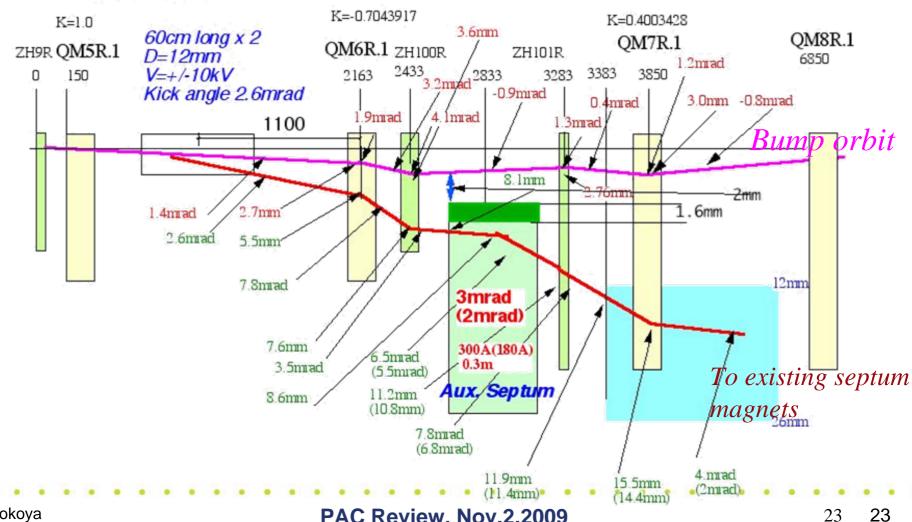
Extracted Emittance

- Extracted emittance > ring emittance
 - One of the possible reasons: non-linear effect by QM7R due to off-center orbit
 - − → replaced with larger magnet
- Measurement
 - 5 wire scanners (10μmφ tungsten)
- Corrections
 - η_y correction: with 2 skew Qs placed at non-zero η_x section
 - Coupling correction: with 4 skew Qs just upstream of WS section


Measured Extraction Line Emittance

Fast Kicker Development

- Kicker with rise/fall time 3~6ns needed
- Use combination of fast pulser and stripline

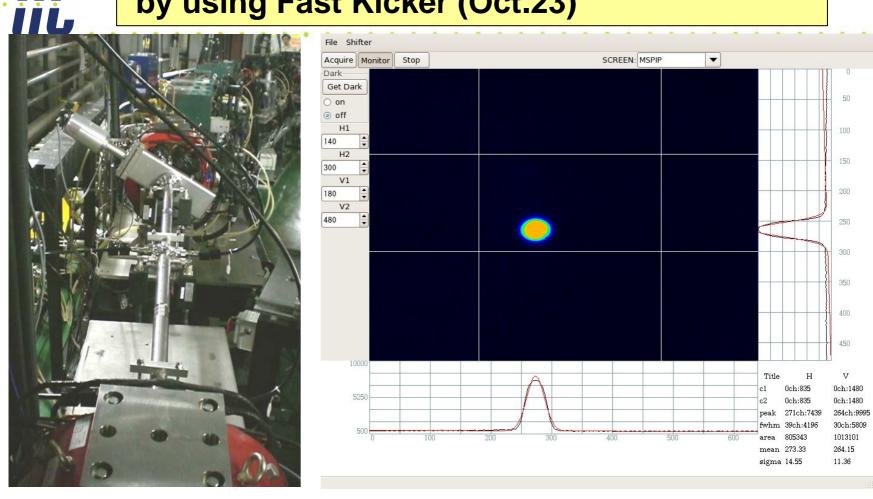

Pulsers

- FID (commercial) pulser confirmed to give < 3ns already in 2006
- SLAC/LLNL pulser (based on Mosfet technology)
- SLAC/DTI pulser (based on DSRD (drift step recovery diode) technology)

Beam Extraction Orbit by using Strip-line Kicker & pulse bump

2.6mrad kick angle

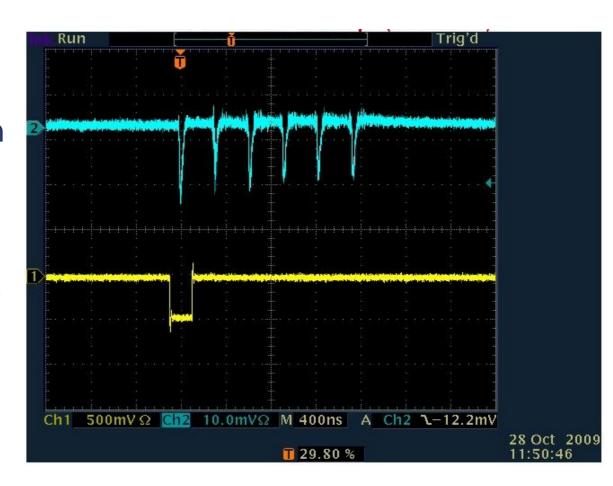
Extraction Experiments (1)


- Jan.2009
 - FID and LLNL pulsers broke down after ~1hr experiment
 - The radiation level at the pulser location turned out to be to high
 - Pulsers repaired in April
 - Moved outside the shield
- Jun.2009
 - Bump orbit confirmed
 - FID pulser worked without trouble
 - But the beam could not be extracted
 - Kick angle (~2mrad) insufficient by 20-30%
 - Fabrication error of the stripline electrode-- fixed
 - FID replaced for higher power (~3.6mrad)

Extraction Experiments (2)

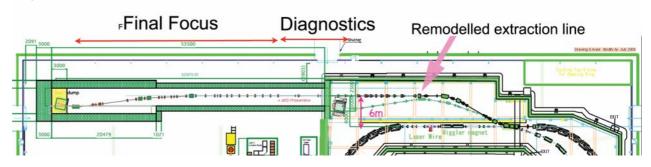
- Oct.2009 (next pages)
 - Succeeded in single bunch extraction on Oct.23
 - Multi-bunch extraction succeeded in Oct.28
- Next experiment
 - Scheduled in Jan.2010
 - Stabilization of timing jitter

Beam Extraction succeeded from DR to ATF2 by using Fast Kicker (Oct.23)



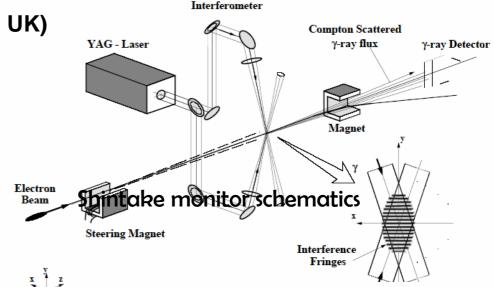
The left side picture shows the proto-type of the fast kicker installed in the DR of ATF-KEK. The beam is extracted by using the fast kicker, the right picture shows the beam profile at the end of the ATF2 beam line.

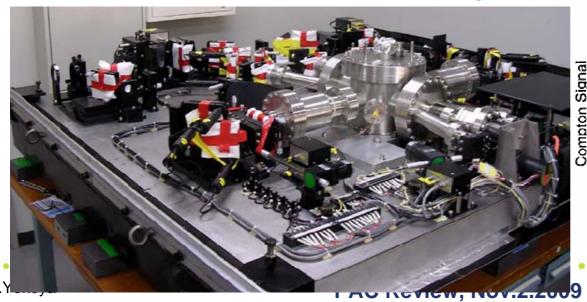
First Multi-bunch Extraction Oct.28

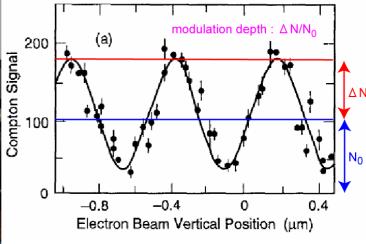

- Bunch interval 5.6ns
- Kicker excitation interval 308ns
- Upper line: bunch charge measured in the extraction line
- Hor: 400ns/div
- Ver: 0.2nC/div

ATF2

- Miniature of ILC Final Focus
 - Same optics system as ILC
 - Tolerances similar to ILC
 - International project
 - Funding
 - Manpower
 - >100 people from >25 institutes

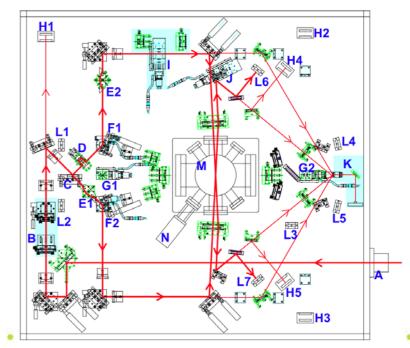

- Goals
 - 1st step: Beam size < 35nm (by 2010)
 - IP BSM (beamsize monitor) needed
 - 2nd step: Stability of the beam centroid < 2nm (by 2012)
 - IP BPM (beam position monitor) (<2nm) needed
 - IP feedback system
 - ILC format beam from ATF
- Construction started in 2005 and completed in December 2008




IP Beam Size monitor (BSM)

(Tokyo U./KEK, SLAC, UK)

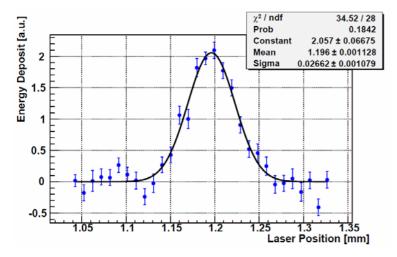
- Improvement FFTB BSM
 - 1064nm=>532nm
 - dynamic range:
 35nm up to a few μm
 - phase scanning mode


FFTB sample : $\sigma_y = 70 \text{ nm}$

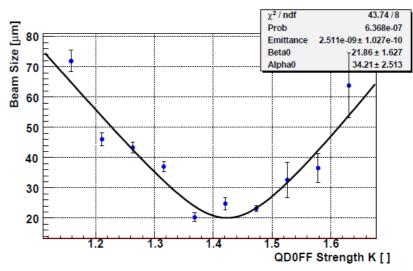
Commissioning of IPBSM

- First test: Jan-Feb 2009
- Laser Wire mode
 - 0.2~0.5x10¹⁰ electrons
 - Laser size < 20μm
 - Expected beam size ~10μm
 - photons O(1000)/bunch
- Obtained convolution size ~50μm

Interference mode					
4 steps of crossing angle					
2deg	1400~	nm			
8deg	360~1400	nm			
30deg	100~360	nm			
174deg	25~100	nm	(below)		



Result by End of May


- Horizontal beam size measurement by laserwire
 - laser size at the IP : σ_L =10-15 um
- Q-scan at the IP was performed by laserwire mode

Horizontal beam size measurement

Example: $\sigma = 26.6$ um

Q-scan of horizontal beam size

emittance from fitting $\varepsilon_x = 2.5$ nm ($\sigma_1 = 10$ um)

$$\varepsilon_{\rm x}$$
 = 2.0 nm ($\sigma_{\rm L}$ =15 um)

Upgrade during Summer Shutdown

- Improve signal resolution
 - Raise the laser power 400mJ → 1500mJ
 - Add collimator
- Install the laser-beam adjustment device
- Speed up of DAQ
 - Prepare the module for 3Hz repetition rate
 (Δf Ramp for dispersion correction)

Other ILC Activities at ATF/ATF2

- FONT4: Bunch-by-bunch digital feedback system
- Monalisa: Monitor relative motion between final quads and IP-BSM
- Straightness monitor
- Cavity BPMs
- Pulsed Laser Wire
- XSR beam size monitor
- Positron generation by laser-Compton

ilr.

ATF2 Future Plan

Plan to Jan.2010

- Continue fast extraction kicker R&D in Damping Ring
- Confirm large β* optics (β_{x,y}=8,1cm) → towards sub-μm σ_y
- First signal evidence in interference mode \rightarrow BSM σ_v measurement
 - New BSM hardware
 - Carbon wire scanner at IP with 5 μm diameter
 - Cavity BPM stability and reproducible calibrations
 - Strip-line BPM improved calibration & reproducibility
 - Efficient optical tuning strategy in extraction line → IP spot

Plan for 2010-2012

- New strip-line BPM electronics
- Multi-OTR fast extraction line 4D phase space diagnostics
- Tilt monitor & IP-BPM R&D
- FONT
- Background study at and near IP as function of β* and FD alignment

Summary

- CESRTA
 - Almost all reconfiguration works finished
 - Great deal of data of EC growth obtained
 - Comparison with simulation showing great progress
 - Various EC mitigation techniques being compared
 - Choice for ILC DR expected soon
- ATF/ATF2
 - Extraction by fast kicker (multibunch) successful
 - ATF2 beamsize tuning in early stage. IPBSM will try interferometer mode soon