Consideration on the Conceptual Phase Stabilisation System

D. Schulte for the phase stabilisation team

LCWS 2010, Beijing March 2010

Main to Drive Beam Tolerance

- Integrated simulations have been performed with PLACET and GUINEA-PIG of main linac, BDS and beam-beam
 - system is assumed to be perfectly aligned (to determine BDS bandwidth effect)
 - assuming target emittance at BDS
- Resulting luminosity loss is about 2% for

$$\frac{\sigma_G}{G} \approx 1 \times 10^{-3}$$

and

$$\sigma_{\phi} \approx 0.3^{\circ}$$

$$\frac{\Delta \mathcal{L}}{\mathcal{L}} \approx 0.01 \left[\left(\frac{\sigma_{\phi, coh}}{0.2^{\circ}} \right)^2 + \left(\frac{\sigma_{\phi, inc}}{0.8^{\circ}} \right)^2 + \left(\frac{\sigma_{G, inc}}{0.75 \cdot 10^{-3} G} \right)^2 + \left(\frac{\sigma_{G, inc}}{2.2 \cdot 10^{-3} G} \right)^2 \right]$$

• Main beam current needs to be stable to $\approx 0.1 - 0.2\%$

Emittance Growth

- To evaluate impact of RF error in misaligned machine assumed machine after ten days of ground motion and one-to-one alignment
 - \Rightarrow emittance is close to nominal
 - \Rightarrow pessimistic, no disperison optimisation
 - only main linac emittance growth is considered
- $\Delta \epsilon_y = 0.8 \, \mathrm{nm}$ corresponds to 2% luminosity loss
- \Rightarrow Resulting luminosity from emittance growth is comparable to the one caused by limited BDS bandwidth

Impact of Bunch Compressor

• The drive beam needs to be compressed longitudinally

 \Rightarrow energy errors will translate into phase errors

$$\delta z = R_{56} \Delta E / E$$

• For fully loaded operation

$$\frac{\delta E}{E_0} = \frac{2\delta G}{G_0} - \frac{\delta N}{N_0}$$

 \Rightarrow Can attempt to avoid compression

Example Tolerances, Full Compression at Final Turn-Around

- White noise type pulse-to-pulse jitter assumed
- Total compression after drive beam accelerator
 - energy chirp of 0.6% per $\sigma_z=3\,\mathrm{mm}$ requires $R_{56}\thickapprox 0.5\,\mathrm{m}$
 - \Rightarrow relative energy error tolerance is 3×10^{-5}
 - \Rightarrow relative gradient tolerance is 1.5×10^{-5}
 - \Rightarrow relative charge tolerance is 3×10^{-5}
 - \Rightarrow phase tolerance is 0.02° at $1 \,\mathrm{GHz}$
- Looks very tough
 - \Rightarrow try to find ways to relax the tolerances

Drive Beam Compression and Phase Stabilisation Concept

Feedforward at Final Turn-Around

- Final feedforward shown
 - ultima ratio
 - measure phase
 - adjust BC chicane with kicker to compensate error
- Requires
 - timing reference (FP6)
 - phase measurement/prediction (FP7)
 - tuning chicane (FP6, Frank S.)
- Missing will be kicker and amplifier
 - but collaboration with Oxford envisaged

Capture Range of Feedforward

- We have modified our previous design
- Longitudinal shifts change final bunch length
- We require that RF amplitude error caused by longitudinal shift is below 0.1%
- $R_{56} \approx 0.2 \,\mathrm{m}$
- System with 16 1 m long kickers would need up to $\approx 1 \text{ MW}$ power during kick
 - less than $1 \, m^3$ for power supplies (FONT-type)

Tolerances before Feedforward

- Can cure phase error
 - could also cure intensity error if we rely on off-crest running
- Want to capture 3-4 times RMS tolerance before feedforward
 - assume gain factor of 10
- Assume feedforward capture range is 10° ($\Delta z = 0.7 \,\mathrm{mm}$)
 - lattice is OK but kicker needs to be evaluated
 - \Rightarrow can allow 2.5° RMS jitter before feedback (4 σ capture)
 - assume gain factor of 10
 - $\Rightarrow 0.25^{\circ} \text{ RMS}$ jitter after feedforward
- Beam stability in current decelerator design requires less than 1% overcurrent
 - \Rightarrow require 0.1% RMS fluctuation per 10/2 bunches (one PETS fill time), or reoptimise decelerator
 - current stability from preliminary CTF3 measurement is 0.1%
 - static variations still need to be cured

Baseline Bunch Compressor System

• Early compression in drive beam accelerator $(3 \text{ mm} \rightarrow 1 \text{ mm})$

 \Rightarrow can use relatively large energy spread \Rightarrow small $R_{56} \Rightarrow$ large energy error tolerance

- Uncomression at end $(1 \text{ mm} \rightarrow 2 \text{ mm})$
 - to limit coherent snychrotron radiation in delay loop and combiner rings
- Recompression after rings $(2 \text{ mm} \rightarrow 1 \text{ mm})$
- Measure real phase at final phase feedforward
- Uncompress in turn-around
- Recompress before decelerator
 - used as correction chicane with small additional kicks
- To first order only RF errors at first compression are important
- assume (maybe optimistic) chirp of 2–3% per σ_z

 $\Rightarrow R_{56} = 67 - 120 \,\mathrm{mm}$

- \Rightarrow relative energy tolerance $1-2 \times 10^{-3} \Rightarrow$ relative gradient tolerance is $0.5-1 \times 10^{-3} \Rightarrow$ relative charge tolerance is $1-2 \times 10^{-3}$
- \Rightarrow phase tolerance is $\thickapprox 0.2^\circ$ at $1\,GHz$

Current Measurement in CTF3

- No dedicated stabilisation effort in CTF3
- \Rightarrow Current stability is close to needs for CLIC
 - Dynamic charge variation from one pulse slcie to the next seems better than BPM resolution

Improvement with Simulated Feedback

- Assume a pulse to pulse feedback on the current and use measured data
 - \Rightarrow current stability would improve to 0.06%

Phase and Power Measurement in CTF3

- Measurements of phase and power of CTF3 klystron indicate
 - phase stability of 0.2°
 - power stability of < 0.2%
 - \Rightarrow gradient stability $\leq 0.1\%$
- \Rightarrow Corresponds to drive beam needs
 - Improvements appear possible

Filtering and Intra-Pulse Feedback

- Long drive beam pulse at generation $\approx 140\,\mu s$
- End of pulse catches up with beginning due to combiner rings

- Also design of sequence of acceleration and bunch compression for drive beam can help to achieve required performance
 - but still need to beam able to measure final jitter

Drive Beam Turn-Around Jitter Tolerance

- Obviously magnet jitter tolerance should be relaxed if all magnets are on one power supply
 - isochronos arc
- Detailed study finds for 10^{-4} relative strength jitter
 - independent jitter of all magnet power supplies: RMS of $14\,\mu m$
 - all magnets jitter coherently: RMS of $20\,\mathrm{nm}$
 - quadrupoles and dipoles each jitter coherently: RMS of $13\,\mathrm{nm}$
- \Rightarrow For reasonable cabling the tolerances are relaxed

Transverse Drive Beam Jitter

• Longitidinal motion due to transverse angles

- Assumed that systematic effect is tuned out
- \Rightarrow Only jitter component left
- Decelerator is most important (largest phase advance)
- Need to average over local phase error to obtain effective phase error

$$\left(\frac{\Delta x}{\sigma_x}\right)^2 + \left(\frac{\Delta x'}{\sigma_{x'}}\right)^2 + \left(\frac{\Delta y}{\sigma_y}\right)^2 + \left(\frac{\Delta y'}{\sigma_{y'}}\right)^2 \le 1^2$$

Main Beam to Main Beam Phase Tolerance

• Shift of beam waist in one beam

Main Beam Phasing

- In central complex external timing reference assumed
- Along the main linac
 - distributed timing system
 - use of main beam as timing reference

Main Beam Phasing

- Measure phase and energy error in damping ring and correct with BC1 at extraction
 - needs to be worked out
 - energy and phase stabilisation in damping ring needs to be studied
- Before beams are sent to main linacs could measure and correct phase
 - no design exists for now, exploration required

Resulting IP Beam-Beam Phase Error

- If the main beam serves as a timing reference we find
 - Beam-beam phase jitter at the interaction point

$$\sigma_{BB} \approx \sqrt{2} \left(\frac{6}{7} \sigma_{MB \to RF} \oplus \sigma_{MB} \right)$$

 σ_{MB} : Timing error of outgoing main beam

 $\sigma_{MB \rightarrow RF}$: Error of picking up phase of outgoing main beam and turning this into BC2 RF phase

Note: the factor 6/7 is due to the second bunch compressor

 \Rightarrow Relative rhase error of the two outgoing main beams needs to be $\leq 21\,\mu{
m m}$

• If we use the X-FEL system as timing reference we find

$$\sigma_{BB} \approx \sqrt{2} \left(\frac{1}{7} \sigma_{MB} \oplus \frac{6}{7} \left[\sigma_{ref} \oplus \sigma_{ref \to RF} \right] \right)$$

 σ_{ref} : Timing error of reference timing at final turn-around with respect to central clock $\sigma_{ref \rightarrow RF}$: Error of picking up phase of external reference and turning this into BC2 RF phase

 \Rightarrow Relative rhase error of the references at final turn-around needs to be $\leq 21\,\mu{\rm m}$

• Energy error also leads to main beam phase jitter

Beam Waist Feedforward

- If we measure the relative phase errors of the outgoing main beams we can move the waist longitudinally with a feedforward
 - Could have fast quadrupoles
 - Kick beams in sextupoles
 - Could accelerate/decelerate beam just before the final doublet, where the chromaticity is uncorrected
- Details need to be worked out

RTML Tolerance

- Gradient error in booster linac (without energy feedforward): 4×10^{-4}
 - could be relaxed to 1×10^{-3} but large beam energy jitter at main linac
- Phase error of first bunch compressor (BC1) at 4 GHz:
 - 0.04° for main beam as timing reference
 - 0.26° for X-FEL scheme
- Coupling of RF for both main beams would help
 - but currently different time slices are used
- Phase errors from the damping rings can be cured in BC1
- Relative phase of electron and positron beam can be measured after booster linac
 - feedback for phase tuning appears possible
 - feedforward is not obvious before BC2
 - could correct at BC2 and ship phase error signal to all turn-arounds
- Better solution may be to measure beam energy and phase before BC1 and correct with feeforward

Main to Drive Beam Phase Errors

- If the main beam serves as a timing reference we find
 - Main beam vs. drive beam phase jitter in main linac

$$\sigma_{MD} \approx (\sigma_{MB \to RF} \oplus 0 \times \sigma_{MB}) \oplus (\sigma_{MB \to ref} \oplus \sigma_{DB \to corr} \oplus a\sigma_{DB})$$

- If we use the X-FEL system as timing reference we find
 - Main beam vs. drive beam phase jitter in main linac

$$\sigma_{MD} \approx \left(\frac{1}{7}\sigma_{MB} \oplus \frac{6}{7}\left[\sigma_{ref} \oplus \sigma_{ref \to RF}\right]\right) \oplus \left(\sigma_{ref} \oplus \sigma_{DB \to corr} \oplus a\sigma_{DB}\right)$$

or roughly

$$\sigma_{MD} \approx \sigma_{ref \to RF} \oplus \sqrt{2}\sigma_{ref} \oplus \sigma_{DB \to corr} \oplus a\sigma_{DB} \oplus \frac{1}{7}\sigma_{MB}$$

Feedback and Tuning Strategy

- Feedback to deal with slow variations
- Tuning to deal with static or slow imperfections
- Need a path length tuning system for each turn-around
 - in drive beam and main beam
- Need an adjustment of path length from one drive beam turn-around to the next
- Similarly for the combiner rings, the delay loop and the drive beam accelerator complex
- \Rightarrow Slow drifts of relative phasing of the beams do not appear to be an feasibility issue

Feedforward and Feedback Layout

Some Open Issues

- Performance of hardware, in particular distributed timing
- Drive beam source design
 - and stability
- Damping ring phase, energy and charge stability
 - phase could be cured in BC1
 - tight requirements for sources, waiting for feedback from working group
- Relative phasing of the drive beam to the RF is an issue
 - stabilised by stabilising temperature etc.
 - e.g. RF network requires $0.2\,\mathrm{K}$ stability (Walter, Module WG)
 - other options exist, e.g. measuring the phases

Further Work

- Integration of injectors and damping rings
 - for the injectors already bunch-to-bunch charge variation of 1% is required (0.1% for main linac accelerating structure fill time
- Study of BDS improvements, in particular the waist shift options
- Exploration of other potential phase stability issues
- Tracking of bunches through relevant systems to verify performance
- Simplified model of error propagation to achieve specifications
 - correlations between errors
- Slow feedback estimates

Conclusion

- We have two options to provided a distributed phase reference system in the main linac
 - use the outgoing main beam
 - X-FEL-like system
 - or a combination
- Decision needs to be based on further input from hardware performance
- We seem to have a concept for drive beam generation and transport complex that leads to acceptable tolerances
 - demonstration of hardware
 - \Rightarrow close to becoming a performance and cost issue
 - ready for improvements (cost, performance)
 - e.g. one central feedforward
- The effective loop and transfer line lengths are measured and can be corrected with feedback
- We need to look again into effects within the drive beam accelerator pulse
- The missing systems need to be studied
 - and detailed layouts for the conceptual systems
- Should review module phase stability strategy

Reserve

Single Stage Bunch Compressor Option

- Total compression after drive beam accelerator or just before decelerator
 - not clear that this yields a small enough energy spread
- Energy chirp is limited to at most 0.5-0.6% per $\sigma_z = 3 \text{ mm}$
 - Due to combiner rings and turn-around loops
- Required R_{56} can be estimated (excluding overcompression) as

$$\frac{\sigma_{z,0} - \sigma_{z,1}}{\Delta E(\sigma_z)/E} \le R_{56} \le \frac{\sigma_{z,0}}{\Delta E(\sigma_z)/E}$$

- For the given energy spread and initial bunch length and the final target of $\sigma_{z,1}=1\,{\rm mm}$ we find
 - \Rightarrow Requires $R_{56} = 333-600 \text{ mm}$
 - \Rightarrow relative energy error tolerance is $2-4 \times 10^{-4} \Rightarrow$ relative gradient tolerance is $1-2 \times 10^{-4} \Rightarrow$ relative charge tolerance is $2-4 \times 10^{-4}$
 - \Rightarrow phase tolerance is $\approx 0.2^{\circ}$ at $1\,\mathrm{GHz}$