### **A Spin Rotator for CLIC**

A. Latina (FNAL), D. Schulte, F. Stulle (CERN)

March 26-30, 2010

LCWS2010 - Beijing, China

- Spin rotator design criteria
- Spin dynamics
- CLIC RTML layout and SR location
- Spin rotator lattice and options
- Summary and conclusions

### **Spin Rotator Design Criteria**

- Design Criteria (P. Emma for NLC, 1994)
  - Spin should be orientable in any direction
  - Net momentum compaction must be small such that energy fluctuations do not become longitudinal position fluctuations (less than 100  $\mu$ m bunch length @ IP for NLC)
  - It should be located such that total spin diffusion due to energy spread is small
  - System should not dilute significantly the beam transverse emittance (small energy spread)
  - System should be short, simple and robust

# **Spin Dynamics**

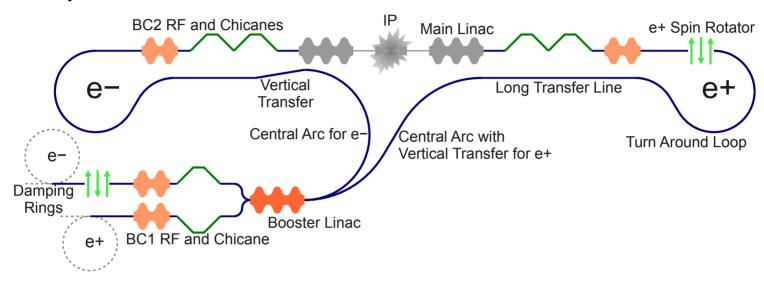
Spin Precession

$$\phi_s = G \gamma_0 \alpha$$

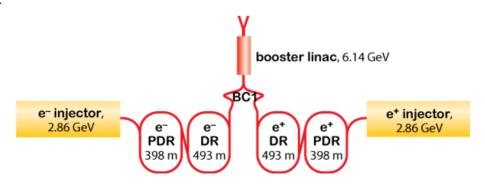
Mean polarization:

$$< P_z> = P_0 e^{\frac{-(G\gamma_0\alpha\sigma_\delta)^2}{2}}$$

Relative depolarization:


$$1 - \frac{\langle P_z \rangle}{P_0}$$

Where


| Symbol            | Value         | Description                        |
|-------------------|---------------|------------------------------------|
| G                 | 0.00115965219 | anomalous momentum of the electron |
| $\alpha$          | -             | arc bending angle                  |
| $\gamma_0$        | -             | relativistic factor                |
| $\sigma_{\delta}$ | _             | energy spread                      |

#### RTML Layout and Spin Rotator Location

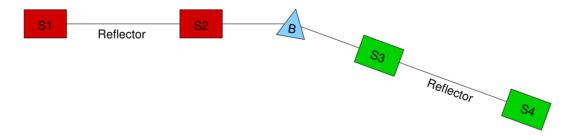
#### New layout



#### Previous layout



# Spin Precession and Depolarization in CLIC


| region                       | $E_0$ [GeV] | $\sigma_{\delta}$ | $lpha_{ m electrons}$ [rad]         | $lpha_{ m positrons}$ [rad] |
|------------------------------|-------------|-------------------|-------------------------------------|-----------------------------|
| exit of damping rings to bc1 | 2.86        | 0.13%             | 0                                   | 0                           |
| exit of bc1 to booster       | 2.86        | 1.04%             | 0                                   | 0                           |
| exit of booster to bc2       | 9           | 0.33%             | $\pi - \pi + HV\text{-doglegs} = 0$ | $\pi$ +HV-doglegs= $\pi$    |
| exit of bc2 to bds           | 9           | 1.64%             | 0                                   | 0                           |
| exit of main linac to ip     | 1500        | 0.35%             | $1\cdot 10^{-3}$                    | $1\cdot 10^{-3}$            |

| region                          | $E_0$ [GeV] | $\sigma_{\delta}$ | $1 - \frac{\langle P_z \rangle}{P_0}$ [%] | $\phi_s = a  \gamma_0  \alpha   [deg]$ | <i>n</i> -turns |
|---------------------------------|-------------|-------------------|-------------------------------------------|----------------------------------------|-----------------|
| exit of damping rings to bc1    | 2.86        | 0.13%             | 0                                         | 0                                      | 0               |
| exit of bc1 to booster          | 2.86        | 1.04%             | 0                                         | 0                                      | 0               |
| exit of booster to bc2 entrance | 9           | 0.33%             | 0 / 2.2                                   | $0 / 3676.4 \equiv 76.4$               | 0 / 10.2        |
| exit of bc2 to bds              | 9           | 1.64%             | 0                                         | 0                                      | 0               |
| exit of main linac to ip        | 1500        | 0.35%             | 0.007                                     | 195                                    | 0.54            |

- ⇒ From the point of view of the spin dynamics, ideal location for the spin rotators would probably be: before bc1 for the electrons, before bc2 for the positrons
- $\Rightarrow$  Notice that, in case of a symmetric RTML where both spin rotators are placed before bc1 and assuming that the beam experiences a total bending angle  $\alpha = \pi/2_{\mathrm{booster} \to \mathrm{bc2}}$  for each line, the total depolarization per beam is 0.56% per line. (with a precession of 5.1 n-turns)

#### **Spin Rotator Lattice**

- Spin Rotation is achieved by two solenoids with a bending magnet in between
- Each solenoid is split in two parts separated by a reflector  $\begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}$  to correct for couplings  $\Rightarrow$  there are four solenoids in total
- The central bending section must rotate the spin by 90 degrees
- This configuration allows arbitrary spin orientation



#### **Description**

- Reflector beamline : four FODO cells with 90 degrees phase advance in X and 45 degrees phase advance in Y
- Bend section: mini arc composed by three FODO cells with 90 degrees phase advance in X and Y (can be shortened)

# **Solenoid Strength**

ullet Each of the four solenoids must be capable of providing a maximum of  $\pm 45$  degrees spin rotation

$$\psi_{\rm spin} = \pi/4$$
, with  $\psi_{\rm beam} = \psi_{\rm spin}/2$ 

- Solenoid strength

$$k = \frac{\psi_{\text{spin}}}{2L} = \frac{B_z}{2(B_0 \rho)}$$

Assuming 2.6 meters long solenoids (like ILC)

$$k = \frac{\pi/4}{2} \frac{1}{(L = 2.6 \text{ m})} = 0.15104 \text{ m}^{-1}$$

⇒ The maximum longitudinal field is:

$$B_{z,max} = 2 \cdot k \cdot (B_0 \rho) = 2 \cdot k \cdot \frac{E_0}{ec} = 2 \cdot 0.15104 \text{ m}^{-1} \cdot \frac{E_0}{ec}$$

required magnetic field at 2.86 or 9 GeV is:

$$B_{z,max} @ 2.86 \text{ GeV} = \mathbf{2.9} \text{ T}$$
  
 $B_{z,max} @ 9 \text{ GeV} = \mathbf{9.1} \text{ T}$ 

# **Bending Arc**

• The bending section should rotate the spin by 90 degrees

$$\phi_s = a \gamma_0 \alpha = \frac{\pi}{2}$$

$$\alpha @ 2.86 \text{ GeV} = \frac{\pi/2}{a (\gamma_0 = 2.86e3/0.511)} = 0.24202 \text{ rad} = 13.867 \text{ degrees}$$

$$\alpha @ 9 \text{ GeV} = \frac{\pi/2}{a (\gamma_0 = 9e3/0.511)} = 0.076908 \text{ rad} = 4.4065 \text{ degrees}$$

Magnetic strength:

$$B\rho @ 2.86 \text{ GeV} = \frac{pc}{ec} = \frac{2.86 \text{ GV}}{c} = \frac{2.86 \text{ GV}}{2.997925 \cdot 10^8 \text{ m/s}} = 9.5 \text{ T m}$$

$$B\rho @ 9 \text{ GeV} = \frac{pc}{ec} = \frac{9 \text{ GV}}{c} = \frac{9 \text{ GV}}{2.997925 \cdot 10^8 \text{ m/s}} = 30 \text{ T m}$$

### **Bending Magnets and Longitudinal Motion**

• Assuming to be using 6, 1 meter long magnets, this corresponds to a bending radius

$$\rho$$
 @ 2.86 GeV =  $\frac{L}{\alpha} = \frac{6 \cdot 1 \text{ m}}{0.24202 \text{ rad}} = 24.792 \text{ m}$ 

$$\rho$$
 @ 9 GeV =  $\frac{L}{\alpha} = \frac{6 \cdot 1 \text{ m}}{0.076908 \text{ rad}} = 78.015 \text{ m}$ 

⇒ Magnetic field

$$B @ 2.86 \text{ GeV} = \frac{9.5 \text{ T m}}{24.792 \text{ m}} = 0.38319 \text{ T}$$

$$B @ 9 \text{ GeV} = \frac{30 \text{ T m}}{78.015 \text{ m}} = 0.38454 \text{ T}$$

 $\Rightarrow R_{56}$  for the bending section is:

$$R_{56} @ 2.86 \text{ GeV} = 60.0 \text{ mm}$$
  
 $R_{56} @ 9 \text{ GeV} = 6.0 \text{ mm}$ 

#### **ISR-Induced Emittance Growth**

The effect of incoherent synchrotron radiation (ISR) emission on the emittance growth can be estimated using

$$\Delta \gamma \epsilon = 4 \times 10^{-8} E^6 \text{ [GeV] } I_5 \text{ [m}^{-1}]$$

where

$$I_5 = \frac{4L}{|\rho|^3} \cdot \frac{\eta^2 + (\eta\alpha + \eta'\beta)^2}{\beta}$$

 $\Rightarrow$  Case of E=2.86 GeV: using L=1 m,  $\rho$  = 24.8 m, average dispersion and its derivative  $\eta$  = 0.3 m and  $\eta'$ =0.15 rad, horizontal twiss  $\beta$ =22.5 m and  $\alpha$  =  $\pm$ 3.5, and horizontal emittance  $\gamma\epsilon$  = 0.68  $\mu$ m:

$$\frac{\Delta \gamma \epsilon}{\gamma \epsilon} = 0.7\%$$

 $\Rightarrow$  Case of E=9 GeV: using L=1 m,  $\rho=78.0$  m, average dispersion and its derivative  $\eta=0.1$  m and  $\eta'=0.05$  rad, horizontal twiss  $\beta=22.5$  m and  $\alpha=\pm3.5$ , and horizontal emittance  $\gamma\epsilon=0.68$   $\mu$ m:

$$\frac{\Delta \gamma \epsilon}{\gamma \epsilon} = 0.003\%$$

### **Spin Rotator and Bunch Compressor**

- P. Emma, 1994: "the rotator system has very little impact on the performance of the bunch compressor"
- Longitudinal transfer matrix of the bunch compressor

$$R_{\rm BC} = \left(\begin{array}{cc} 1 + fR_{56} & R_{56} \\ f & 1 \end{array}\right)$$

- In case of full compression, ie.  $1+fR_{56}=0$ , adding the spin rotator changes the total transfer as follows

$$R_{\mathrm{BC}} \cdot R_{\mathrm{ROT}} = \begin{pmatrix} 1 + fR_{56} & R_{56} \\ f & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & R_{56} \\ f & 1 + \alpha f \end{pmatrix}$$

 $\Rightarrow$  Bunch length after compression is unchanged by the rotator and the energy spread after compression is smaller ( $f=2~\text{m}^{-1}$ ,  $\alpha=-0.04~\text{m}$ ):

$$\sigma_{z,f} = \sigma_{\delta,i} R_{56}, \qquad \sigma_{\delta,f} = \sqrt{\sigma_{z,i}^2 f^2 + \sigma_{\delta,i}^2 \left(1 + \alpha f\right)}$$

- In our case, as bc1 does not fully compress,

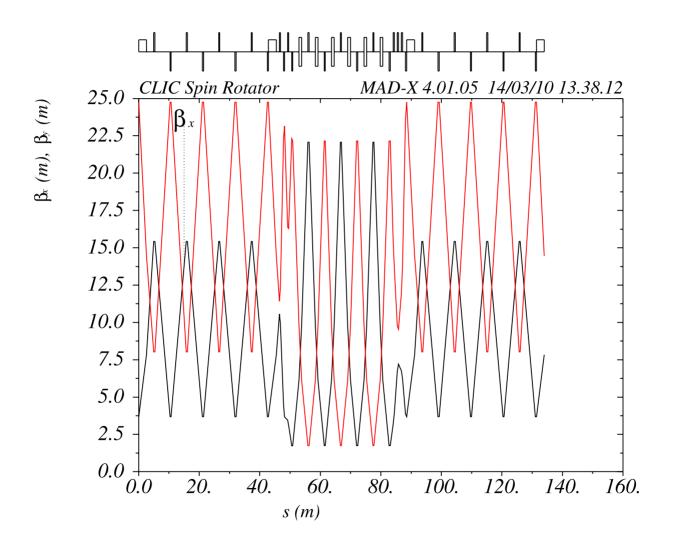
$$R_{\text{BC}} \cdot R_{\text{ROT}} = \begin{pmatrix} 1 + fR_{56} & R_{56} + \alpha \left(1 + fR_{56}\right) \\ f & 1 + \alpha f \end{pmatrix}$$

⇒ Rotator might have an impact on the compression factor

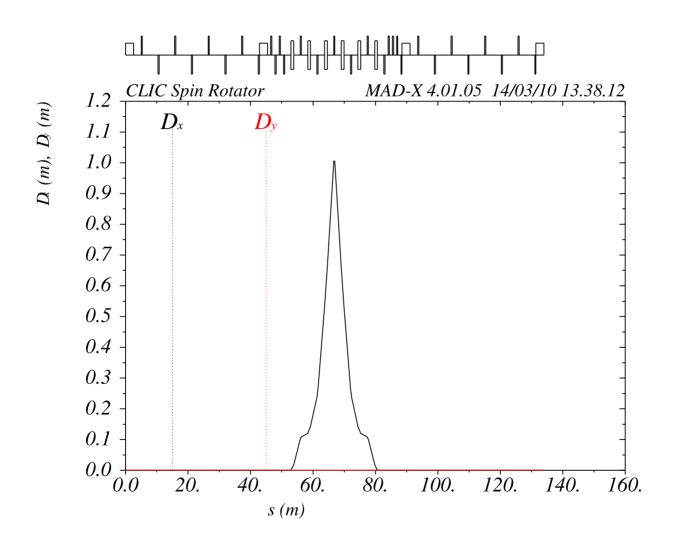
$$\sigma_{z,f} = \sigma_{\delta,i} \left[ R_{56} + \alpha \left( 1 + f R_{56} \right) \right]$$
$$\sigma_{\delta,f} = \sqrt{\sigma_{z,i}^2 f^2 + \sigma_{\delta,i}^2 \left( 1 + \alpha f \right)}$$

Notice that if  $\alpha f < 0$  the final energy spread gets reduced

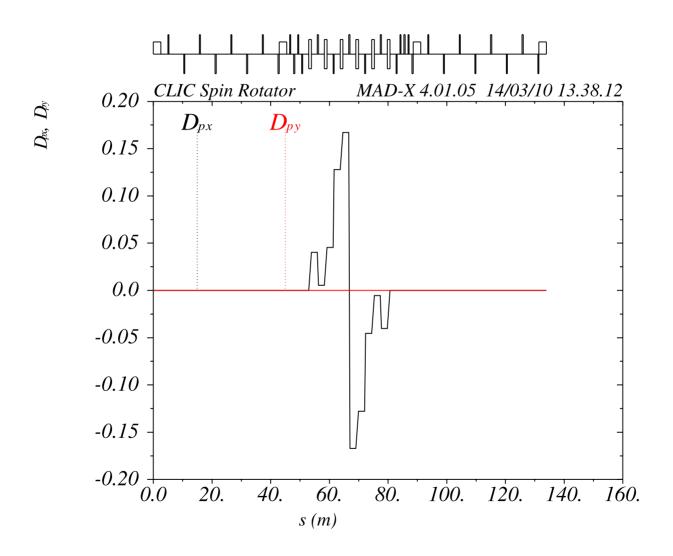
 $\Rightarrow$  This issue can be overcome using an isochronous arc.


### **Summary Table and Conclusions**

Relevant parameters with the spin rotator location, for electrons and positrons:


| quantity                                    | before bc1(*) | before bc2 | symm.rtml | unit  | remarks                |
|---------------------------------------------|---------------|------------|-----------|-------|------------------------|
| beam energy                                 | 2.86          | 9          | 2.86      | GeV   |                        |
| bending angle                               | $0 (\pi)$     | 0          | $\pi/2$   | rad   |                        |
| spin depolarization                         | 0 (2.2)       | 0          | 0.56      | %     | bds excluded           |
| spin precession                             | 0 (10.2)      | 0          | 5.1       | turns | 11 11                  |
| solenoid field                              | 2.9           | 9.1        | like (*)  | Т     | L=2.6 m                |
| bending angle                               | 13.9          | 4.4        | like (*)  | deg   | $L{=}1~\mathrm{m}$     |
| bending magnet                              | 0.38          | 0.38       | like (*)  | Т     | " "                    |
| $R_{56}$                                    | 60.0          | 6.0        | like (*)  | mm    |                        |
| $\Delta\gamma\epsilon_x$ by synrad emission | 0.7           | 0.003      | like (*)  | %     | negligible             |
| total length                                | 134.0         | longer     | like (*)  | m     | scales with the energy |

- ⇒ New RTML layout: potential problem might be the large solenoid field for the positrons; positron spin rotator before bc2 would be longer; positron spin rotator before bc1: 2.2% depolarization seems to me negligible
- ⇒ Old RTML layout (symmetric): no major problems, negligible depolarization
  - Detailed beam dynamics studies have to be carried out
  - ullet Impact of  $R_{56}$  on the bunch compressor must be evaluated / use of an isochronous arc


# **Spin Rotator Optics**



# **Spin Rotator Optics**



# **Spin Rotator Optics**

