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Sources of Transverse Beam Motion

e A number of sources for transverse beam motion exists

- ground motion

- technical noise

- jitter amplification by mechanical supports
- RF gradient and phase jitter and dispersion
- beam jitter from upstream systems

- dynamic magnetic field variations

- temperature variations

e Not all are due to the technical installation

= beam stability is site dependent

= develop beam stabilisation techniques and use what a given site re-
quires



Tools to Reduce Beam Motion

e Choose a quiet site

- e.g. the LEP/LHC tunnel is relatively quiet

e Avoid technical noise

- identify sources of noise and modify their design if possible

e Avoid amplification of vibrations through supports etc.

- careful girder design
e Use mechanical feedback and feedforward
e Use motion sensor based feedforward on the beam

e Use beam-based feedback

- mainly using BPM signals



Strategy to Evidence Beam Stability for CDR

e Perform integrated simulation of main linac, beam delivery system and
collision including

- RF phase and amplitude jitter
- a realistic model of the ground motion and technical noise
- realistic transfer through supports, including mechanical feedback

- realistic sensitivity curves and noise for ground motion sensors for
beam-based feedforward

- a realistic concept of the beam-based feedback

e Have an integrated simulation of main linac, BDS and beam-beam inter-
action

- PLACET, benchmarked with LIAR, MAD, Merlin, Lucretia, SLEPT
etc., tested at CTF3

- GUINEA-PIG, benchmarked with CAIN



Feedback

e Can use a simplified treatment for understanding
e Luminosity loss is given by
AL = ALyncorrected(9) + ALnoise(g) + ALyesidual(t)
AL ncorrected(g): 10ss not yet corrected due to feedback delay

AL vise(g): loss due to noise introduced by feedback (e.g. BPM
resolution)

AL ncorrected(t): residual loss that the feedback does not correct by
design

e We will eventually use a full model of the machine and feedback in the
beam simulations



IP Feedback/Feedforward Conceptual Layout
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e Currently the following feedback /feedforward systems are foreseen

- a mechanical feedback for the quadrupoles (ground motion sensors on
quadrupoles+actuators)

- an intra-pulse beam-based feedback (BPMs+kickers)
- a pulse-to-pulse beam-based feedback system (BPMs+kickers)

- a feed-forward system based on ground motion sensors using the kickers
to move the beam

e Beam-beam jitter tolerance 0.3 nm for 2% loss



Example of Mechanical Feedback and Noise

e A cantilever with feed-
back on the stabilisation
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Simplified Model

e Ignore incoming beam jitter c
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Integration with Mechanical and Beam-Based Feedback
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Addition of Feedforward
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Example Sensor: Geophone
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Sensor Frequency Choice
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Cantilever Designs

e Designs and transfer
functions from Hubert
Gerwig, Alain Herve and
Fernando Duarte Ramos

e Different designs not
tuned for  specific
frequency

e Scenario 4 is shown
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Impact of Cantilever
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Ground Motion Models

e Some examples are
shown
- Annecy and CMS hall
floor

- models based on An-
drei Seryi's measure-
ments

e LEP/LHC tunnel is rela-
tively quiet

e Model B has similar
shape as Annecy or CMS
hall floor

- B10 if we amplify
one peak by factor 10
agrees even better
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Ground Motion Correlation

e Ground motion is corre-
lated

e Correlation has an im-
pact on the luminosity
performance

- e.g. relative offsets
of final quadrupoles
is important (relevant
distance ~ 12m)

= high frequency part is
uncorrelated

p(f) [m?/HZ]
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Another Model for CERN Site

e Consider ground motion
as combination of

- ground motion model

A

- technical noise mod-
eled as (Ch. Collette)
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Impact of Ground Motion

e Assumed a direct one-
to-one transfer to beam
line elements and simpli-

fied feedback

e Perfect stabilisation (air
hook) is assumed at all
frequencies

e Also multipoles in fi-

nal doublet area are sta-
bilised

e Note: in A stabilisa-
tion can increase lumi-
nosity loss as machine
drifts away from sta-
bilised magnets
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Example: Impact of Quadrupole Stabilisation

e Assume stabilisation of
all quadrupoles accord-
ing to table in Annecy

- for illustration only

e Need to replace the
transfer  function  of
that table more realistic
model

- iteration with stabili-
sation
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Technical Noise
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Main Linac Quadrupole Offset Tolerance

e Full simulation of main

linac and BDS

= The multi-pulse emit-
tance is a good measure
of the luminosity loss

= The collimator wake-
fields add somewhat to
the luminosity loss

e Tolerance for 1% dy-
namic luminosity loss is
~ 1.3nm
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Beam Delivery System QuadrupoleOffset Tolerance
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Main Linac Feedback Design
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Beam Delivery System Feedback Design
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e Simple beam-beam feedback based on

e Assuming 37 ns latency one can hope

e Only cures offsets, um BPM resolution
is sufficient, but large aperture
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Main Linac and BDS Mechanical Feedback/Feed-Forward

e In the main linac and BDS ground motion sensor based beam feed-forward
can be used

e Aim is to make the system cheaper

- no mechanical feedback on quadrupoles
- measurement of quadrupoles motion
- correction by orbit correctors

e Requires is good system knowledge

= Juergen’s thesis

e More challenging than the local mechanical stabilisation but could be less
costly

= could be an alternative described in CDR
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Conclusion

e Beam-based feedback design is under development

- need to complete the BDS feedback

e Need more input from and interaction with the stabilisation group

- noise sources
- mechanical design and feedback
- Sensors

e Controler design started and needs continuation

- integration of stabilisation and beam physics
e Integration is making progress

- but quite a way to go
e Exploration of other beam jitter sources

- e.g. stray fields study will start at CERN
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Dynamic Imperfections

e Luminosity loss is part of the emittance budget

e But limit luminosity fluctuation to less than 10%

- total luminosity fluctuation is not straightforwad

Source

budget

tolerance

Damping ring extraction jitter

0.5%

kick reproducibility 0.10

Transfer line stray fields % data needed
Bunch compressor jitter 1%
Quadrupole jitter in main linac 1% | Ojitter = 1.81m
RF amplitude jitter in main linac 1% 10.075% coherent, 0.22% incoherent
RF phase jitter in main linac 1% 0.2° coherent, 0.8° incoherent
RF break down in main linac 1% rate< 3- 107" m 'pulse!
Structure pos. jitter in main linac | 0.1% | 0jitter =~ 880 nm
Structure angle jitter in main linac | 0.1% | 0jiuer ~ 440 nradian
Crab cavity phase jitter 2% | 0y~ 0.017°

: . r s 17(0.34 -
Final doublet quadrupole jitter 2% gjétge(rl 7)nm 0.17(0.34) nm
Other quadrupole jitter in BDS 1%

= Long list of small sources adds up

— Ilmbact of feedback svetem i imbportant




Comment on Magnetic Field Stability

e The magnet has different oscillation modes

e The external vibration of each is not necessarily identical with the field
vibration

e Feed-forward will help

- can identify the modes with the sensors
- can determine the correlation with beam motion experimentally in situ
- can use feed-forward to compensate additional magnetic motion

e Also would want to have the freedom to include feed-forward from direct
ground measurement before mechanical feedback
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Available Signals at Interaction Point

e The IP feedback/feed-forward system controls the beam-beam offset

e Available beam signals are for each beam pulse

- the beam-beam deflection from the post-collision BPMs
- the incoming beam jitter from the pre-collision BPMs
- the incoming beam offset from the pre-collision BPMs

- other beam-beam signals (energy loss, coherent and incoherent pairs,

e Other available signals from ground motion sensors are the mechanical
motion

- of the ground from ground
- of the quadrupole support

- of the final quadrupoles
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Interaction Point Feedback Design

e Currently the following feedback /feedforward systems are foreseen

- a mechanical feedback for the quadrupoles (ground motion sensors on
quadrupoles+actuators)

- an intra-pulse beam-based feedback (BPMs+kickers)
- a pulse-to-pulse beam-based feedback system (BPMs+kickers)

- a feed-forward system based on ground motion sensors using the kickers
to move the beam

e More complex systems need to be in-

tegrated but not on CDR timescale = _ ~_beam 2 _ |-
- 2 - = BPM
- etc.  waist shift correction with - CT> -
beamstrahlung monitors _ = com 1 Ip | -|_
kicker —

e Beam-beam jitter tolerance 0.3 nm for
2% loss
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Proposed Conceptual Layout
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e Sensors are used for mechanical feedback

e Feed-forward kicker does not need to be identical with intra-pulse feedback
kicker

e Expected beam-beam offset due to quadrupole slice offsets d; and kicker
strength k can be calculated via

Ay = —a(kff + kb> + Zbiél-

e Choose k¢ such that Ay = 0 is expected

= final beam motion is determined by sensor noise

- and imperfections in system knowledge
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Simplified Model

e Ignore incoming beam jitter

e Four independent point-like quadrupoles studied

- correlations will help, correlation expected strong for micro-seismic
peak, will change controller design

- assume that measured stability is stability of whole quadrupole

e Quadrupole stabilisation feedback and beam feed-forward modelled by
using sensor noise

e Beam-based feedback adds kicker strength k;

e Simple home-made controller used:
Ay(n —1)

a

ky(n) = giky(n — 1) + g,
Ay(n—1) Ay(n —2)

a

+g42 (kb(n — 1) — kb(n — 2)) + g4
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Beam Feedback Transfer Function
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e Control on velocity cures 1

low frequency perturba- 0.5
tions better but causes 0
more ampllfl.catlon at f [Hz]
high frequencies

Transfer to beam

e Serious study of con-
troler design started in
Annecy (B. Caron, L.
Brunetti)

Transfer to beam




Main Linac Feedback Performance

e The multi-pulse emit-
tance growth as a func-
tion of the feedback gain
is calculated

- corresponds to

ﬁuncorrected(.g )
- primitiv controler
used

Ag,, [nm]
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