Sid Muon R&D

H. Band University of Wisconsin

Sid Muon

- Expected Backgrounds

 Barrel -Beam halo induced muons
 3 10⁻³/cm²- pulse train
 Endcap -2 γ hadrons & μ
 4 10⁻² /cm²- pulse train

 Detector design
 - Modest resolution ~ cm
 - 9-10 layers interspersed in steel flux return (8 λ)
 - X and Y coordinate readout ~ 3-4 cm pitch

Sid Muon Detector

- Baseline choice
 - Double gap RPCs operating in avalanche mode are expected to have lowest cost and have adequate reliability
 - RPC and steel boundaries staggered to minimize geometric inefficiencies
 - > 93% eff. per layer
 - Digitized by KPIX(64or128)

- Detector Option
 - MINOS style scintillating strips with SiPM readout being pursued to understand cost and performance of SiPM readout - reliable backup

RPC/ KPiX Studies

- RPC readout with KPiX chip previously reported at LCWS08 and ALCPG09
- 64 channel interface board with KPiX7
- First tests
 - Optimize Ω & capacitor values
 - Protection circuits
 - KPIX readout modes

- Good efficiency but
 3.1 strips/track
- Next steps
 - Reduce noise
 - Reduce multiplicity

RPC Studies

Ongoing programs at Princeton and Wisconsin to understand RPC aging (Bakelite/melamine)

- Princeton C. Lu
 - IHEP RPCs
 - Bakelite/melamine from Chinese industry
 - No linseed oil design
 - Used in BESIII& DayaBay,
 - Proposed for SiD
 - Surface quality studies
 - Accelerated aging studies
 - Development of new materials

- Wisconsin H. Band
 - BaBaR forward RPCs
 - Construction similar to ATLAS/CMS RPCs
 - 6 years of data
 - Large range of background & signal rates
 - Analysis of trends & correlations
 - Autopsy of aged RPCs

3/28/10

C. Lu Princeton

IHEP RPCs

- Accelerated aging studies with Co₆₀ equivalent to 7.6 years of cosmic ray rate
 - Sizable eff. losses
 - HV surfaces are vulnerable to HF produced in gas

H. Band UW

BaBar RPCs

- Verify 2nd generation
- Clear Aging
 - Noise rate 400 Hz \rightarrow 3 kHz
 - Current < $1 \,\mu A \rightarrow 12 \,\mu A$
- However
 - Graphite Ω unchanged
 - Linseed oil OK
 - Bakelite Ω ~unchanged
 - High rate regions show discoloration

μ pairs with beam

"Bleached Area"

Scintillating Strip with SiPM R&D

- Fermilab beam test in progress
- Uses 1.2 mm round ISRT SiPM ~ 650 pixels
- 3.6 m X2 strips

Giovanni Pauletta INFN/UDINE • T-995 Muon Detector/Tail Catcher R&D Using Stripscintillator and Pixelated

Photon Detectors

H.E. Fisk, A. Meyhoefer, A. Para, E. Ramberg, & P. M. Rubinov Fermilab M. Wayne, M. McKenna University of Notre Dame D. Cauz, M Ouri, G. Pauletta, INFN: Roma I and Trieste/Udine J. Blazey, S. Cole, I. Viti, D. Hedin, R. Shea, Northern Illinois University, P. Karchin, A. Gutierrez Wayne State University

3/28/10

Beam in the top strip 10 cm from readout end.

17581

5168

Entries Mean 1.271e+004 RMS

Signal

0

10

800

Time of pulse arrival relative to Trig PMT T3 (ns)

Preliminary Results¹²

- Attenuation measured as a function of distance from SiPM
 - Data not fitted by single exponential
- Vertical Scan of Inter-strip Crack
 - Region ~1mm wide with efficiency ~55%.

4000 2000 0 200 20

H. Band –LCWS 10

22

24

26

Vertical position (mm)

28

30

32

10

Summary

- KPiX readout of RPCs looks promising
- RPC aging studies More details emerging
 - Graphite, linseed oil problems seem fixed
 - Aging in streamer mode, associated with rates > 2
 Hz/cm² or bad gas
 - RPCs without linseed oil are more sensitive
- Scintillation strips/SiPMs
 - Beam test data validating design with SiPMs
- Both efforts are low on manpower and would welcome interested groups