

Efforts on the R&D of SRF cavity at Peking University

SRF Group Institute of Heavy Ion Physics, Peking University

- Cavities made by Peking University
- Development of relative techniques
- Future plan

Efforts on the R&D of SRF cavity at Peking University

Cavities made by Peking University

2010-3-28

Collaboration with OTIC to develop Large Grain Nb cavity since 2005

Simplify the machine process of Nb sheetsOnly BCP is needed

In 2006, acceleration gradient of 1.3GHz Large grain single cell reached 43.5MV/m, Bp=185mT PKU Large Grain cavity

After BCP treatment & baking at 120°C for 12 hrs by Dr. P. Kneisel at J-Lab

L-G Nb Cavities made by Peking University

In 2007, large grain 2-cell cavity , 40 MV/m

After 80 μ m BCP, HT 800°C, 100 μ m EP, 4 x HPR, HT 120°C in Ar atmosphere, kept at 90-140 K for 24 hours

Conclusions:

- No Q disease.
- E=40.2 MV/m, Q=1.2·10¹⁰, BD, no FE after MP processing in 1st Pi mode run at 1.8 K.
- Q versus T done up to 1.5 K. Residual resistance of Nb material was 4E-9 Ohm.
- MM: both modes limited by BD, at 40 and 44 MV/m, without FE.
- Very good cavity made of a good Nb material.
- China may be a next producer of good superconducting cavities.

Vertical test at DESY

Krzysztof Twarowski

L-G Nb Cavities made by Peking University

In 2009, 3.5cell large grain cavity, 23.5MV/m

Vetical test at JLab

Large grain 3.5 cell Nb cavity of 23.5 MV/m @ Q0 >1E10 after BCP, HPR and HT 2 hrs at 800°c by Dr. R. Geng at J-Lab

In 2008, first 9-cell cavity in China , Eacc is 23MV/m

F-G Nb Cavities made by Peking University

2-Cell PKU Cavity, Ningxia Niobium

Fine grain Nb cavity

Treated & Tested by Dr. P Kneisel at JLab

10 Cavities totally, 6 with end group

3 single cell , 2 2-Cell , 1 5-Cell , 2 3.5-Cell , 3-9Cell

2010-3-28

Development of Relative Techniques for Cavity

Deep drawing and machining of cups

2010-3-28

Development of Relative Techniques for Cavity

EBW studies: collaboration between HIT (Harbin Institute of Technology) and PKU

- 1 EBW machine
- 2 sample welding
- 3 dumbbell welding
- 4 cavity welding

266×1.7(mm)

Development of Relative Techniques for Cavity

Geometrical test

Measure the frequency and coupling factor (k) for the dumb-bell

RF test and tuning of cups and dumb-bells

Measure the frequency of cups

Processing of Nb dumbbells

Cleaning

BCP Polishing

Anode oxidizing

Defect detection

2010-3-28

Annealing at 1250°C in Nb box with Ti plate & rod at Ningxia OITC

Tuning for 9-cell cavity

SRF cavity tuning facility

After Tuning

HOM coupler

Recent Progresses of SRF Technology at Peking University

Future Plan

DC-SC photocathode injector

3+1/2 cell cavity is installed in DC-SC photoinjector

Cryostat of 3.5cell DC-SC photoinjector

Cryo-modules

9-cell cavity is installed in a Cryo-mudule

BCP system for 9-cell cavity and vertical test system will be built

A "well" with 5m depth and 1.3m diameter is ready

Future Plan

First 2K cryogenic system for SRF in China

More 9-cell cavities will be fabricated with higher Eacc!

Recent Progresses of SRF Technology at Peking University

Thank you!

- •BCP , $\,\sim\,100\;\mu m$
- ●600°C , 10 hrs
- •Field flatness tuning
- •BCP , ~50 μm
- •HPR , ~ 5 hrs
- •BCP , ~50 μm

r _{iris}	[mm]	35	30	33
k _{cc}	[%]	1.9	1.52	1.8
E _{peak} /E _{acc}	-	1.98	2.36	2.21
B _{peak} / E _{acc}	[mT/(MV/m)]	4.15	3.61	3.76
R/Q	[Ω]	113.8	133.7	126.8
G	[Ω]	271	284	277
R/Q*G	<i>[</i> Ω*Ω]	30840	37970	35123

Heat load (at 2K)

	Pulsed	CW
Static heat load of main accelerator	12 W	12 W
Dynamic heat load of main accelerator	4.4 W	88 W
Static heat load of injector	6 W	6 W
Dynamic heat load of injector	1 W	20 W
Transfer lines	10 W	10 W
Total heat load without contingency	33.4 W	136 W
Total static heat load with 50%	42 W	42 W
contingency		
Total heat load with 50% contingency	50.1 W	204 W (150L/h)

$$P_{diss} = \frac{V^2}{Q_0 \cdot R / Q} \times DutyFactor$$