Welcome to ILCWS2010 and ILC10

1

Introduction of Institute of High Energy Physics

Hesheng Chen

Institute of High Energy Physics Beijing 100049, China

Outline

- Introduction
- BEPC/BEPCII
- Daya Bay reactor neutrino experiment
- Particle astrophysics
 - Yanbgjing cosmic ray observatory
 - Space program
- Multiple discipline research
- Chinese Spallation Neutron Source
- Medium and long term plan
- Close remarks: cooperation with JLAB

Institute of High Energy Physics

- Institute of Modern Physics: established at 1950
- Institute of High Energy Physics: independent Institute for Particle physics at 1973
 - \rightarrow Comprehensive and largest fundamental research center in China
 - 1250 employees, 2/3 of them are physicists and engineers,
 - 450 PhD Students and postdoctors
- Goal of IHEP: multiple discipline research center based on large scientific facilities.

3

Major research fields at IHEP

- Particle physics:
 - Charm physics @ BEPC
 - LHC exp.
 - Yangbajing cosmic ray observatory
 - particle astrophysics
 - v physics: Daya Bay reactor v exp.
- Accelerator technology and applications
 - High Lumi. e+e- collider: BEPCII
 - High power proton accelerator
- Radiation technologies and multidiscipline
 - Synchrotron radiation source and applications
 - Spallation neutron source and application
 - Multiple discipline research: biology, nano-sciences, energy,environment.....

Beijing Electron Positron Collider (BEPC) at IHEP

BEPC: constructed 1984-1988 BESI: run from 1989-1998 BESII: run from 1999-2004 BECPII upgraded 2004-2008 BESIII: run from 2008

E_{beam}~ 1–2.5 GeV

Ebeam~ 1-2.3 GeV

With BESI and BESII data:

- precision measurement of τ mass: 10 times improved. Lepton universality!
- R measurements improve uncertainties by a factor of 2-3 (ΔR/R~6%). Great impact to M_H.α(M_z²), g-2
- Some new particles X(1835) observed. Hard to be interpreted as conventional hadrons. ppbar bound state?

Precision measurement requires high statistics and small sys. errors → Major upgrade: BEPCII / BESIII (2004-2008)

7

7

BEPCII: a high luminosity double-ring collider

Joint Commissioning

- BESIII detector moved into the IR in May
- Joint commissioning started 22 June.

BEPCII reached design goals on schedule within the budget

• Linac: positron injection rate improved by > factor of 15

- BESIII performance reached the design goals.
- Synchrotron radiation running hard X-ray flux increased by a factor of 10
- luminosity of storage ring reached 3.2 ×10³²cm⁻²s⁻¹ May 2009. a factor of 32 improvement
- BEPCII passed the assessment of the funding agency July 17, 2009.
- By summber 2009, 120M Ψ'events and 200M J/Ψ collected/

	The second	even m con	ision moue
parameters	design	Achieved	
		BER	BPR
Energy (GeV)	1.89	1.89	1.89
Beam curr. (mA)	910	650	700
Bunch curr. (mA)	9.8	>10	>10
Bunch number	93	93	93
RF voltage	1.5	1.5	1.5
* v _s @1.5MV	0.033	0.032	0.032
$\boldsymbol{\beta}_x^*/\boldsymbol{\beta}_y^*(\mathbf{m})$	1.0/0.015	~1.0/0.016	~1.0/0.016
Inj. Rate (mA/min)	200 e ⁻ / 50 e ⁺	>200	>50
Lum. (x 10 ³³ cm ⁻² s ⁻¹)		0.33	

· 中国科学院高生节日知完好

Preliminary physics results

- Confirm BESII results
 - threshold enhancement γppbar, γωφ, X(1835), ...
- Improved measurements
 - $-h_{c},\eta_{c},\chi_{cJ},,...$
- New observations
 - $-\chi_{cJ}$ decays
 - h_c decays
 - Light hadrons, ...
- 3 papers accepted and 4 submitted

Physics at BEPCII/BESIII

- Precision measurement of CKM matrix elements
- Precision test of Standard Model
- QCD and hadron production
- Light hadron spectroscopy
- Charmonium production/decays
- Search for new physics/new particles

Physics	Energy (GeV)	Peak Luminosity (10 ³³ cm ⁻² s ⁻¹)	Events/year	Existing data
J/ψ	3.097	0.6	10×10 ⁹	60×10 ⁶ (BESII)
τ	3.67(?)	1.0	12×10 ⁶	
ψ'	3.686	1.0	3×10 ⁹	27 ×10 ⁶ (CLEOc) 14 ×10 ⁶ (BESII)
D	3.77	1.0	3×10 ⁶	5×10 ⁶ (CLEOc)
Ds	4.03	0.6	1×10 ⁶	4×10 ³ (BESI)
Ds	4.17	0.6	3×10 ⁶	0.3×10 ⁶ (CLEOc)
R scan	3.0-4.6	0.6(?)-1.0		

Precision measurement of ν mixing $\theta_{13}\text{:}$ Daya Bay reactor ν experiment

- Daya Bay nuclear power plant: 4 reactor cores, 11.6 GW
 2 more in 2011 for a total of 17.4 GW
- Mountains near by, easy to construct a lab with enough overburden to shield cosmic-ray backgrounds
- 90% tunnel construction finished. Begin data taking with the Near-Far configuration later 2011
- Expect to reach sensitivity of 0.01 with 3 years of running.

Experimental layout

Identical detector at near and far site to perform relative measurement in order to cancel reactor related systematic error Experimental halls are connected by

- 3000m tunnel Signal rate :
- ~1200/day Near ~350/day Far
- Backgrounds : B/S ~0.4% Near B/S ~0.2% Far 17

LHC Experiments

1. CMS (IHEP, Peking Univ.)

- 1/3 of CSC at muon end caps (IHEP)
- RPC of barrel muon (Beijing Univ.)
- Physics and MC

2. Atlas (IHEP, USTC, Shandong Univ., Nanjing Univ.)

- Drift Monitor chambers (IHEP)
- TGC (Shandong Univ.)
- Physics and MC
- 3. LCG: Tier 2
- 4. LHCb: (Tsinghua Univ.)
- 5. Alice: (Huazhong Normal Univ., CIAE)

ILC R&D Activities

- SC cavities (also for next generation light source)
- Dumping ring design
- Positron source
- detector R&D (IHEP and Tsinghua Univ....) Other R&D:
- works for EXFEL also very useful for ILC R&D
- BEPCII spare cavity (500 MHz)

At meantime, Chinese accelerator teams are heavy loaded with the domestic programs. China will be more active in R&D of ILC in near future.

ILC cavity made by Chinese single crystal (collaborating with KEK Saito group)

Chemical Polishing Facility (installed at IHEP)

SCRF Test Facility is proposed

1.3 GHz SCRF Accelerating Unit and Horizontal Test Stand for ILC, ERL and XFEL

23

Multiple discipline research

- Large Facilities:
 - BSRF
 - CSNS
 - High current slow positron source
 - Beijing Advance Light Source (under discussion)
- Research fields:
 - Biology effects of nano-materials
 - Nuclear image and application
 - Protein structure and function
 - Environment studies with nuclear methods
 - Nano-material science
 -

Chinese Spallation Neutron Source (CSNS)

Status of CSNS

- Proposal approved.
- Feasibility study report approved.
- Preliminary designs are ready, reviews are underway.
- IHEP is in charge of the project with cooperation with Inst. of Physics.
- CSNS will be a branch of IHEP
- Budget: 1.4B RMB + the fund (0.5B) & the free land from the local governments
- Construction and commissioning: 6.5 year
- Major project for machine team and detector team after BEPCII/BESIII
- Design and R&D are going smoothly. many prototypes are under test.

27

Chinese Particle Physics projects in medium and long term plan

- Charm physics @ BEPCII: next 8 years or more
- Intl. collaborations: LHC exp., ILC...
- Particle Astrophysics exp. at Space
 - Modulated hard X-ray telescope satellite
 - SVOM
 - Polar @ Chinese Spacelab.: polarization of γ burst
- Cosmic ray measurement
 - Yangbajing Cosmic ray Observatory: LHAASO
- Neutrino experiments:
 - Daya Bay Reactor neutrino exp.:
- Deep underground Lab.: dark matter search
- South pole Dome A: 4m telescope (under discussion)

Chinese Particle Physics Medium and Long Term Plan (cont.)

- High power proton Accelerator:
 - Chinese Spallation Neutron Source
 - Accelerator Driven Subcritical system
- Beijing Advance Light Source ERL + XFEL

IHEP extents research fields, to protein structure, nano-science, material science...

 \rightarrow Multiple discipline research center

Beijing Advanced Photon Complex

Phase I: Low emittance Synchrotron Radiation source BAPS , 5GeV, 100-200mA, 1nm.rad, 2013-2018 Phase II: X-ray FEL (BXFEL)0.15 nm, 6~8 GeV, 2017-2022 Phase III: X-ray Energy Recovery LINAC source, BXERL, 2022-

Thank you for attention !

Wish the workshop with great success

Pleasant Stay in Beijing !