measuring the top Yukawa coupling at the ILC at E_{cm} = 500 GeV

R. Yonamine (Sokendai), <u>T. Tanabe</u> (Tokyo), K. Ikematsu, K. Fujii, Y. Kiyo (KEK), Y. Sumino (Tohoku), S. Uozumi (KNU), H. Yokoya (CERN) March 28, 2010 Linear Collider Workshop, Beijing

motivation

0.1

T. Tanabe

- although spontaneous symmetry breaking has been a huge success, its verification (discovery of Higgs) is yet to be realized
- once the Higgs is discovered, the precise measurements of its mass, spin, and interactions will be needed to confirm the EWSB and mass generation [fb]
- a critical mission for the ILC is the Higgs coupling measurements (HHH and ttH)
 - ZHH xsec attains its maximum at ~500 GeV
- we investigate the feasibility of measuring the ttH coupling concurrent to the HHH coupling (E_{cm}=500 GeV)

situation at LHC

- at the LHC, direct measurement of the top Yukawa coupling (pp->ttH) is thought to be impossible due to too much background
- through indirect measurement involving gluon fusion with a top loop,

g_t measurement precision is estimated to be ~15% for M_H=120 GeV with 2 x 300 fb⁻¹ data

indirect measurement

- the Higgs sector offers a broad range of possibilities for new physics; consider the scenario in which an anomaly in the Higgs production cross section is found.
- could it be due to...
 - an anomaly in the top Yukawa coupling itself?
 - a manifestation of a new particle X in the loop?
- difficult to distinguish these two with an indirect
 measurement !!

top Yukawa coupling @ ILC

- direct top Yukawa coupling measurement!
- past work estimated the measurement accuracy around E_{cm} = 700-800 GeV where the cross section reaches maximum
- the aim of this study is to demonstrate the feasibility of this measurement at E_{cm}=500 GeV
 - lower xsec due to lower E_{cm}
 - but the ttbar threshold correction enhances the ttH production (and also ttZ and ttg*)
- this makes it possible to perform the direct g_t measurement at E_{cm}=500 GeV₃

signal process: e+e- -> ttH

- event signature:
 - ttH -> bW⁺bW⁻bb
 - 8-jet, 1-lepton + 6-jet, and 2lepton + 4-jet (H->bb: 68%)
- at E_{cm} =500 GeV, ttH production is dominated by γ/Z exchange
 - Higgs-strahlung contribution is negligible (tiny xsec)
 - can determine *g*^{*t*} by event counting
- small signal cross section (< 1fb)
 - further reduced by ISR and beamstrahlung
- after ttbar threshold correction: $\sigma_{ttH} = 0.45$ fb (no beam pol.)

(almost) irreducible background: ttZ, ttg*

- irreducible background (same final state: ttbb -> bqq blvbb)
- electroweak: ttZ -> ttbb (Z -> bb: 15%) ~ 0.2fb with no beam polarization
 - ttbar threshold correction enhances σ_{ttz} from 0.7fb to 1.3fb
- electroweak: W*W*/ZZ* -> ttbb: small contribution (< 0.01fb)
- OCD: **ttg*** -> **ttbb** (g* -> bb: dominant) ~ 0.7fb with no beam polarization
- separate using Mbb vs. MHiggs

reducible background: ttbar

- reducible background but huge cross section: ~500 fb (no beam pol.)
 - hard gluon emission from bottom quarks mimic signal
 - even a tiny fraction of mis-reconstruction or b-tagging failure may lead to significant background contribution
- qq (5 flavors): ~4pb, found to be negligible with 4x b-tag
- WW: ~8pb, negligible with 4x b-tag; ZZ: ~0.58pb, negligible cross section

analysis fran 0.018

- <u>physsim</u>: event generator
 - full helicity amplitude calculation using <u>HELAS</u>; MC phase space integration / final-state particles
 - ISR & beamstrahlung included
 - ttbar threshold correction to ttH/ttZ
 - dedicated ttg generator with correct color strings
 - ttbar
- <u>pythia</u>: parton shower & hadronization
- JSF: fast detector simulation

Detector	Performance	Coverage
Vertex detector	$\sigma_b = 7.0 \oplus (20.0/p)/\sin^{3/2} heta\mu m$	$ \cos \theta \le 0.90$
Central drift chamber	$\sigma_{P_T}/P_T = 1.1 imes 10^{-4} p_T \oplus 0.1\%$	$ \cos \theta \le 0.95$
EM calorimeter	$\sigma_E/E = 15\%/\sqrt{E} \oplus 1\%$	$ \cos \theta \le 0.90$
Hadron calorimeter	$\sigma_E/E = 40\%/\sqrt{E}\oplus 2\%$	$ \cos \theta \le 0.90$

data samples

process	xsec (fb)	generated events	equivalent luminosity (ab ⁻¹)
ttH	1.24	50,000	40.3
ttZ	4.04	50,000	12.4
ttg (g->bb)	1.93	50,000	25.9
tt	1440.	7,000,000	4.9
ttH	0.540	50,000	92.6
ttZ	1.324	50,000	37.8
ttg (g->bb)	0.859	50,000	58.2
tt	618	7,000,000	11.3

e-/e+ polarization = (-1.0, +1.0)

e-/e+ polarization = (+1.0, -1.0)

event selection

6-jet & 1-lepton mode

- find 1 isolated energetic e/mu
- force 6-jet (4 b-jets + 2 jets)
- choose jet combination consistent with
 - ttH = bWbWbb = bqqblnubb
- mass cut & thrust cut

8-jet mode

- force 8-jet (4 b-jets + 4 jets)
- choose jet combination • consistent with
 - ttH = bWbWbb = bqqbqqbb
- mass cut & thrust cut

Preliminary Cut flow: 1 lepton + 6 jets

beam pol: (±o.o, ±o.o)	ttH	tt	ttZ	ttg	significance
No Cut	449.0	514075	1340	697.5	0.625
Thrust Cut < 0.9	448.5	504263	1337	694.8	0.630
Isolated lepton = 1	159.6	175513	439.1	240.9	0.380
Y _{cut} value cut(o.ooo3) before Force 6J	154.8	65213	384.2	209.8	0.603
b-tagging(loose(2,2), tight(2.5,4)) && M - M _{Higgs} > M - Mz for Higgs candidate	49.4	615.7	37.7	43.3	1.809
top Mass Cut > 140 GeV && Thrust cut < 0.78 && Y _{cut} value cut (log10(ycut_f4j) > -2.3)	30.2	16.1	19.5	8.8	3.497

beam pol: (-o.8, +o.3)	ttH	tt	ttZ	ttg	significance
No Cut	759.3	863503	2406	1160	0.815
Thrust Cut < 0.9	758.4	847025	2401	1155	0.822
Isolated lepton = 1	270.8	294796	787.7	395.7	0.498
Y _{cut} value cut(o.ooo3) before Force 6J	262.7	109572	689.4	344.1	0.789
b-tagging(loose(2,2), tight(2.5,4)) && M - M _{Higgs} > M - Mz for Higgs candidate	84.0	1033.8	67.5	72.2	2.369
top Mass Cut > 140 GeV && Thrust cut < 0.78 && Y _{cut} value cut (log10(ycut_f4j) > -2.3)	51.1	26.6	34.5	14.1	4.547

LCWS10, Beijing

(stat. error only) ¹³

beam pol: (±0.0, ±0.0)	ttH	tt	ttZ	ttg	significance
No cut	445.2	516912.7	1338.8	697.4	0.62
Ntrk > 25	445.1	515716.6	1338.0	697.4	0.62
E _{vis} >300GeV	430.2	460838.9	1210.6	650.8	0.63
P _{t,vis} <100GeV	423.1	426059.5	1179.8	612.0	0.65
Y _{jet} > 0.001	407.2	201768.7	1073.1	529.9	0.90
E _{jet} > 5 GeV	404.5	198164.9	1062.1	526.0	0.90
btag & mass cut	31.2	131.3	18.2	7.5	2.28
thrust < 0.7	20.7	25.1	13.5	4.7	2.59

beam pol: (-o.8 , +o.3)	ttH	tt	ttZ	ttg	significance
No cut	744.7	869867.8	2405.2	1159.4	0.80
N _{trk} > 25	744.6	867851.9	2403.8	1159.4	0.80
E _{vis} >300GeV	719.8	775599.7	2174.2	1085.4	0.82
P _{t,vis} <100GeV	707.8	717008.2	2118.9	1022.1	0.83
Y _{jet} > 0.001	681.3	339451.8	1926.9	881.0	1.16
E _{jet} > 5 GeV	676.9	333392.1	1907.7	874.5	1.17
btag & mass cut	52.3	220.9	32.6	12.9	2.93
thrust < 0.7	34.8	41.2	24.6	7.5	3.35

LCWS10, Beijing S(

scaled to 1 ab⁻¹

LCWS10, Beijing

(stat. error only) ¹⁵

1 ab⁻¹

Polarization (e-,e+)	6 Jet + Lepton S / B	8 Jet S / B
(±0.0, ±0.0)	30.2/44.4	20.7/43.3
(-0.8, +0.3)	51.2 / 75.2	34.8/73.3

Polarization (e-,e+)	6 Jet + Lepton S/√(S+B)	8 Jet S/√(S+B)	Combined Significance	Combined ∆g _t / g _t
(±0.0, ±0.0)	3.50	2.59	4.35	11.5
(-0.8, +0.3)	4.55	3.35	5.65	8.8
				· · ·

(stat. error only)

summary & plans

- given:
 - $E_{cm} = 500 \text{ GeV}$
 - 1 ab-1
 - polarized beams (-0.8, +0.3)
- fast simulation studies suggests ~10% accuracy on g_t is achievable
 - concurrent to HHH coupling measurement
- future plans
 - move to full simulation
 - use high performance flavor-tagging: LCFIVertex
 - full SM background scan
 - submit fast simulation results for publication

equations

Arbitrary Polarization from Purely Polarized Beams

$$\sigma(e^+e^- \to X) = \frac{1}{4} [(1+P_{e^-})(1-P_{e^+})\sigma(e_L^+e_R^- \to X) + (1-P_{e^-})(1+P_{e^+})\sigma(e_R^+e_L^- \to X)]$$

$$\chi^{2} = \frac{(m_{2j} - M_{H})^{2}}{\sigma_{H}^{2}} + \frac{(m_{2j} - M_{W_{1}})^{2}}{\sigma_{W_{1}}^{2}} + \frac{(m_{3j} - M_{t_{1}})^{2}}{\sigma_{t_{1}}^{2}} + \left\{\frac{(m_{2j} - M_{W_{2}})^{2}}{\sigma_{W_{2}}^{2}} + \frac{(m_{3j} - M_{t_{2}})^{2}}{\sigma_{t_{2}}^{2}}\right\}_{8j}$$

equations

$$\left(\frac{\Delta\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}}\right)^2 = \frac{S+B}{S^2} + \left(\frac{\Delta B_{\rm syst}}{S}\right)^2 + \left(\frac{\Delta \mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\Delta\epsilon}{\epsilon}\right)^2$$

$$\begin{array}{c} \text{Statistical} \\ \text{Uncertainty} \end{array} \quad \begin{array}{c} \text{Background} \\ \text{Shape} \end{array} \quad \begin{array}{c} \text{Uncertainty} \\ \text{of Integrated} \end{array} \quad \begin{array}{c} \text{Uncertainty of Event Reco.} \end{array}$$

Systematic

Luminosity

Combining Significances

$$S_{\text{combined}} = \sqrt{\sum_{i} (S_i)^2}$$