Genuine CP-Odd Observables

and ZZH Coupling

Tao Han * Univ. of Wisconsin–Madison (LCWS 2010, March 28, 2010)

*Collaborators: Jing Jiang; Neil Christensen, Y.-C. Li

Genuine CP-Odd Observables

and ZZH Coupling

Tao Han * Univ. of Wisconsin–Madison (LCWS 2010, March 28, 2010)

General ZZH Vertex CP-Odd Observables at ILC CP-Odd Observables at LHC

*Collaborators: Jing Jiang; Neil Christensen, Y.-C. Li

The most important coupling for EWSB:

The Higgs boson to gauge bosons, in particular ZZh,

The most important coupling for EWSB:

The Higgs boson to gauge bosons, in particular ZZh,

The most general vertex function for ZZh

 $\Gamma^{\mu\nu}(p_1, p_2) = i \frac{2}{v} h[a \ M_Z^2 g^{\mu\nu} + b \ (p_1^{\mu} p_2^{\nu} - p_1 \cdot p_2 g^{\mu\nu}) + \tilde{b} \ \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}]$ $a = 1, \ b = \tilde{b} = 0 \text{ for SM; } a, \ b \text{ terms: CP-even; } \tilde{b} \text{ term: CP-odd.}$

The most important coupling for EWSB:

The Higgs boson to gauge bosons, in particular ZZh,

The most general vertex function for ZZh

 $\Gamma^{\mu\nu}(p_1, p_2) = i \frac{2}{v} h[a \ M_Z^2 g^{\mu\nu} + b \ (p_1^{\mu} p_2^{\nu} - p_1 \cdot p_2 g^{\mu\nu}) + \tilde{b} \ \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}]$ $a = 1, \ b = \tilde{b} = 0$ for SM; $a, \ b$ terms: CP-even; \tilde{b} term: CP-odd.

In general, a, b, \tilde{b} complex "form factors", from loops.

The most important coupling for EWSB:

The Higgs boson to gauge bosons, in particular ZZh,

The most general vertex function for ZZh

 $\Gamma^{\mu\nu}(p_1, p_2) = i \frac{2}{v} h[a \ M_Z^2 g^{\mu\nu} + b \ (p_1^{\mu} p_2^{\nu} - p_1 \cdot p_2 g^{\mu\nu}) + \tilde{b} \ \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}]$ $a = 1, \ b = \tilde{b} = 0$ for SM; $a, \ b$ terms: CP-even; \tilde{b} term: CP-odd.

In general, a, b, \tilde{b} complex "form factors", from loops.

In an "effective field theory", operators $\frac{g^2}{\Lambda^2}HHW^{\mu\nu}W_{\mu\nu}$, $\frac{g^2}{\Lambda^2}HHW^{\mu\nu}\tilde{W}_{\mu\nu}$, natural size: $a, b, \tilde{b} \sim \mathcal{O}(\frac{1}{16\pi^2} \sim 1)$.

Consider direct production:

$$e^{-}(p_1) e^{+}(p_2) \rightarrow e^{-}(q_1) e^{+}(q_2) h(q_3)$$

via both Zh (Bjorken/Higgs-strahlung) and ZZ (Fusion).

Consider direct production:

$$e^{-}(p_1) e^{+}(p_2) \to e^{-}(q_1) e^{+}(q_2) h(q_3)$$

via both Zh (Bjorken/Higgs-strahlung) and ZZ (Fusion).

• Recoil mass, regardless the Higgs decay mode:

 $(p_1 + p_2 - q_1 - q_2)^2 = m_h^2$

• Distinctive $m_{e^+e^-}$ spectrum: Bjorken process and Fusion can be separated.

Cross section rates: *Zh* Bjorken process:* $\sigma \propto \frac{1}{s}$; *ZZ* fusion:[†] $\sigma \propto \log^2(\frac{s}{M_Z^2})$.

*K. Hagiwara and M. Stong; V. Barger et al.; A. Skjold and P. Osland; ... [†]TH and J. Jiang

Cross section rates:

 $Zh \text{ Bjorken process:}^* \sigma \propto \frac{1}{s}; \quad ZZ \text{ fusion:}^\dagger \sigma \propto \log^2(\frac{s}{M_Z^2}).$ For instance: for $\sqrt{s} = 500 \text{ GeV}, m_h = 120 \text{ GeV}:$ $\sigma(fusion) > 2\sigma(Bjorken, e^+e^- + \mu^+\mu^-) \approx 10 \text{ fb}^{-1}.$

*K. Hagiwara and M. Stong; V. Barger et al.; A. Skjold and P. Osland; ... [†]TH and J. Jiang CP-odd observables at ILC

 $e^{-}(p_1) \ e^{+}(p_2) \rightarrow e^{-}(q_1) \ e^{+}(q_2) \ h(q_3)$

With longitudinally polarized beams, under CP:

$$\mathcal{M}_{--}(\vec{p}_1, \vec{p}_2; \vec{q}_1, \vec{q}_2) \Rightarrow \mathcal{M}_{++}(\vec{p}_1, \vec{p}_2; -\vec{q}_2, -\vec{q}_1), \tag{1}$$

$$\mathcal{M}_{-+}(\vec{p}_1, \vec{p}_2; \vec{q}_1, \vec{q}_2) \Rightarrow \mathcal{M}_{-+}(\vec{p}_1, \vec{p}_2; -\vec{q}_2, -\vec{q}_1).$$
 (2)

CP-odd observables at ILC

 $e^{-}(p_1) \ e^{+}(p_2) \to e^{-}(q_1) \ e^{+}(q_2) \ h(q_3)$

With longitudinally polarized beams, under CP:

 $\mathcal{M}_{--}(\vec{p}_1, \vec{p}_2; \vec{q}_1, \vec{q}_2) \Rightarrow \mathcal{M}_{++}(\vec{p}_1, \vec{p}_2; -\vec{q}_2, -\vec{q}_1),$ (1) $\mathcal{M}_{-+}(\vec{p}_1, \vec{p}_2; \vec{q}_1, \vec{q}_2) \Rightarrow \mathcal{M}_{-+}(\vec{p}_1, \vec{p}_2; -\vec{q}_2, -\vec{q}_1).$ (2)

Based on Eq. (1), construct a LR asymmetry:

 $\mathcal{A}_{hel} = \sigma_{--} - \sigma_{++}$

Based on Eq. (2), construct angular FB asymmetries:

$$\mathcal{A}_{FB} = \sigma_{-+}^F - \sigma_{-+}^B.$$

CP-odd observables at ILC

 $e^{-}(p_1) \ e^{+}(p_2) \to e^{-}(q_1) \ e^{+}(q_2) \ h(q_3)$

With longitudinally polarized beams, under CP:

 $\mathcal{M}_{--}(\vec{p}_1, \vec{p}_2; \vec{q}_1, \vec{q}_2) \Rightarrow \mathcal{M}_{++}(\vec{p}_1, \vec{p}_2; -\vec{q}_2, -\vec{q}_1),$ (1) $\mathcal{M}_{-+}(\vec{p}_1, \vec{p}_2; \vec{q}_1, \vec{q}_2) \Rightarrow \mathcal{M}_{-+}(\vec{p}_1, \vec{p}_2; -\vec{q}_2, -\vec{q}_1).$ (2)

Based on Eq. (1), construct a LR asymmetry:

 $\mathcal{A}_{hel} = \sigma_{--} - \sigma_{++}$

Based on Eq. (2), construct angular FB asymmetries:

$$\mathcal{A}_{FB} = \sigma_{-+}^F - \sigma_{-+}^B.$$

Such as CP-odd observables:

 $\cos \theta_Z \sim \hat{z} \cdot \vec{q}_+, \quad \cos \theta_\ell \sim \hat{z} \cdot (\vec{q}_1 \times \vec{q}_2), \quad \sin \theta_- \sim (\hat{z} \times \vec{q}_-) \cdot (\vec{q}_1 \times \vec{q}_2),$ where $\vec{q}_{\pm} = \vec{q}_1 \pm \vec{q}_2.$ Angular distributions for the asymmetries: $Im(\tilde{b}) \sim 1$

CP-odd observables at LHC

$$pp \rightarrow \ell^- \ell^+ H X$$

or $q\bar{q} \rightarrow ZH \rightarrow \ell^- \ell^+ H.$

CP-odd observables at LHC

$$pp \rightarrow \ell^- \ell^+ H X$$

or $q\bar{q} \rightarrow ZH \rightarrow \ell^- \ell^+ H.$

Problems:

- pp is NOT a CP eigen-state (comparing with $\overline{p}\overline{p}$?) \Rightarrow Most of the subprocesses are NOT from CP eigen-states, W^{\pm} ...
- Even $q\bar{q}$, gg only CP eigen-state in c.m. frame
- Directions of q and \overline{q} randomly symmetrized.

CP-odd observables at LHC

$$pp \rightarrow \ell^- \ell^+ H X$$

or $q\bar{q} \rightarrow ZH \rightarrow \ell^- \ell^+ H.$

Problems:

- pp is NOT a CP eigen-state (comparing with $\overline{p}\overline{p}$?) \Rightarrow Most of the subprocesses are NOT from CP eigen-states, W^{\pm} ...
- Even $q\bar{q}$, gg only CP eigen-state in c.m. frame
- Directions of q and \overline{q} randomly symmetrized.

The naive triplet product variables:

 $(\vec{p}_f imes \vec{p}_{\overline{f}}) \cdot \hat{z}$

will NOT work, because the above • •

Must find new variables suitable to LHC!

$$\mathcal{O}_1 \equiv p_T^+ - p_T^-$$
 or $E_T^+ - E_T^-$,
 $p_T = \sqrt{p_x^2 + p_y^2}, \quad E_T = \sqrt{p_T^2 + m_f^2}.$

It is CP-odd but \hat{T} -even.

Must find new variables suitable to LHC!

$$\mathcal{O}_1 \equiv p_T^+ - p_T^-$$
 or $E_T^+ - E_T^-$,
 $p_T = \sqrt{p_x^2 + p_y^2}, \quad E_T = \sqrt{p_T^2 + m_f^2}.$

It is CP-odd but $\widehat{T}\text{-}\mathrm{even.}$

$$\mathcal{O}_2 \equiv (\vec{p}_f \times \vec{p}_{\overline{f}}) \cdot \hat{z} \operatorname{sgn}((\vec{p}_f - \vec{p}_{\overline{f}}) \cdot \hat{z}),$$

It is CP-odd and \hat{T} -odd.

Must find new variables suitable to LHC!

$$\mathcal{O}_1 \equiv p_T^+ - p_T^-$$
 or $E_T^+ - E_T^-$,
 $p_T = \sqrt{p_x^2 + p_y^2}, \quad E_T = \sqrt{p_T^2 + m_f^2}.$

It is CP-odd but \hat{T} -even.

$$\mathcal{O}_2 \equiv (\vec{p}_f \times \vec{p}_{\bar{f}}) \cdot \hat{z} \operatorname{sgn}((\vec{p}_f - \vec{p}_{\bar{f}}) \cdot \hat{z}),$$

It is CP-odd and \hat{T} -odd.

Note that a CP-odd+ \hat{T} -even ~ sin δ (a CP-conserving strong phase); while a CP-odd+ \hat{T} -odd ~ cos δ . Angular asymmetries at the LHC: $\text{Re}(\tilde{b})$, $\text{Im}(\tilde{b})$

• New sources of CP-violation is needed. Higgs sector BSM is likely the place.

- New sources of CP-violation is needed. Higgs sector BSM is likely the place.
- Genuine CP-odd observables important.

- New sources of CP-violation is needed. Higgs sector BSM is likely the place.
- Genuine CP-odd observables important.
- ILC: Good opportunity to search for CPv, reaching $\tilde{b} \sim 10^{-3}$.

- New sources of CP-violation is needed. Higgs sector BSM is likely the place.
- Genuine CP-odd observables important.
- ILC: Good opportunity to search for CPv, reaching $\tilde{b} \sim 10^{-3}$.
- LHC: Very challenging, but possible (only recently), reaching $\tilde{b} \sim 0.25$.