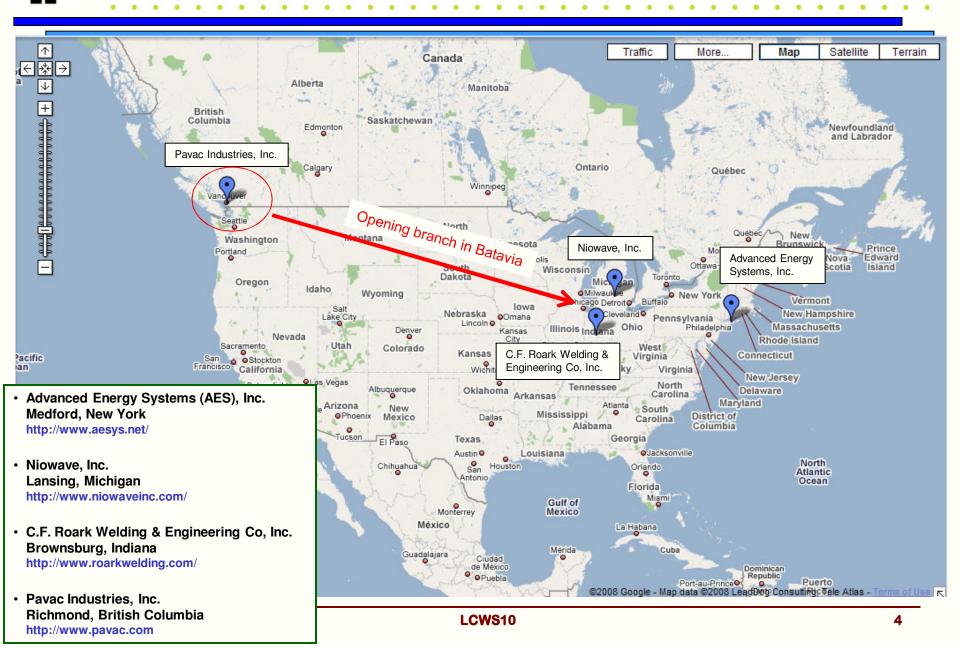
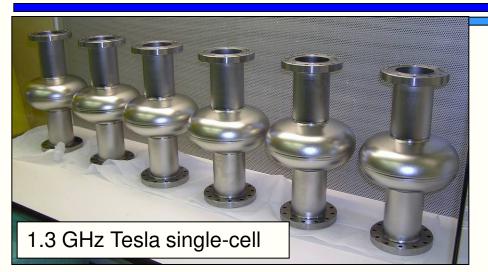
Status of U.S. Cavity & Cryomodule Industrialization

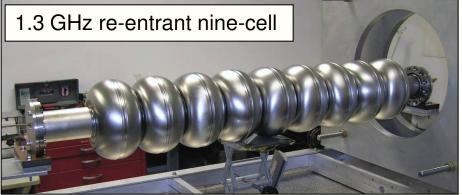
Bob Kephart LCWS10/GDE Beijing, March, 2010

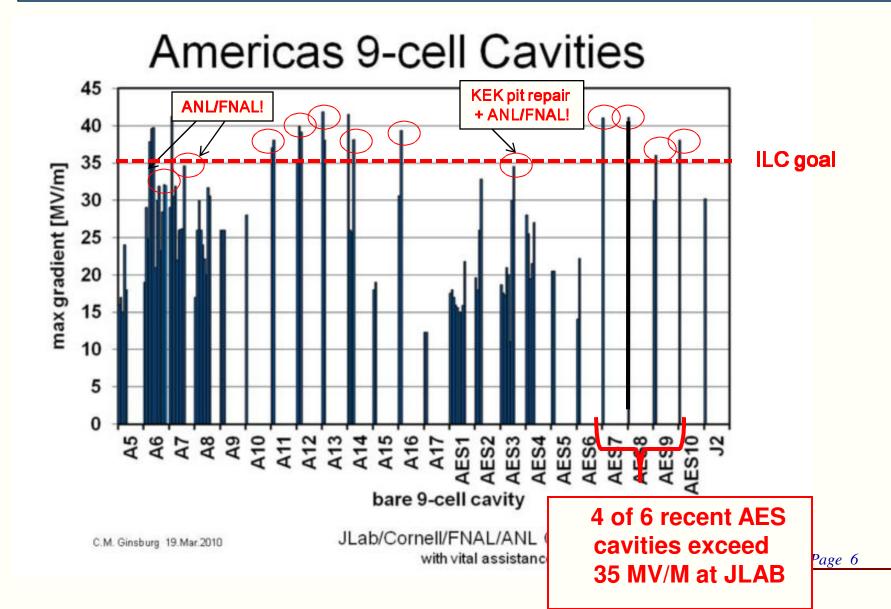

- In this talk I review the current status and plans for:
 - North American industrial fabrication of 1.3 GHz elliptical cavities
 - Industrial fabrication of cryomodule parts
 - Development of an industrial cavity processing capability
- 1.3 GHz cavity and CM procurements support
 - Cavity R&D towards the ILC S0 goals (FNAL, ANL, JLAB, Cornell effort)
 - Construction of cryomodules to attempt to meet ILC S1 & S2 goals
 - Development of qualified cavity and CM parts vendors
- Currently plan to purchase Cavities with the "TESLA" shape
- Cryomodules parts are being ordered in U.S. industry
 - cold mass parts, He vessels, tuners, couplers, etc
- Also working to develop an industrial cavity processing capability in North America
- Most U.S. industrialization is funded with SRF and ARRA funds (generic vs ILC funds)


- Motivation for Industrial Development:
 - Promotes competition which should lead to improved performance of SRF components and lower prices for future accelerators (ILC or Project X)
 - Multiple qualified vendors will ensure product availability in case one vendor ceases operations or has other large contracts
 - Promotes increased industrial capacity in preparation for the construction of projects
 - Part of our mission as a DOE laboratory
- One concern is the timing for industrialization
 - Project timescales (PX and ILC) are still uncertain
 - Once an industrial capability is created it atrophies if not used


춯

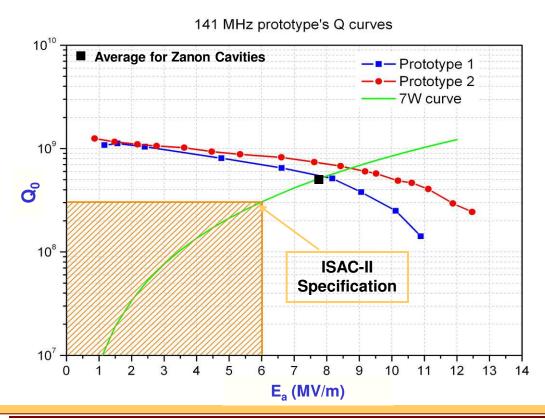
North American Cavity Vendors




AES has complete production capability on-site 10 nine-cells delivered; 6 more in April, 20 more ordered (ARRA)

Niowave & Roark collaborate on 1.3 GHz cavities Roark is working independently on low-beta structures

- Roark 325 MHz beta=0.22 single-spoke cavity
- Delivered Summer 2008
- Design = 10 MV/M @ 4K
- Exceeded 30 MV/M @ 2 K
- Ordered 10 more for Project X


- 6 Single-cell cavities deliver Jun 08
- Performed well
- 6 nine-cell cavities in fabrication
- Expect delivery of 1st 2 in April
- Evaluating bid on ARRA cavities

PAVAC is producing 20 coaxial resonators in collaboration with TRIUMF for the ISAC-II Phase-II extension

- Two prototypes manufactured and tested; production under way.
- Both prototypes perform significantly above ISAC-II specifications; average values of $E_a=8.2MV/m$, Ep=40MV/m cw (specification 6MV/m)
- Pavac is fabricating 6 1.3 GHz single cell cavities, Evaluating bid on ARRA 9-cell cavities
- Excellent expertise in EB welders... NEW! Opening a branch in Batavia

U.S. Cavity inventory and planned procurements

Description	No. Cavities	Status
AES 1-4	4	Tested: AES2 at 32 MV/M, AES3 at 34 MV/m after repair
AES 5-10	6	Tested: 4 of 6 tested at over 35 MV/m
AES 11-16	6	Due April 2010
AES 17-36	20	Ordered Feb 2010 with ARRA funds
Accel 6-9	4	Tested: 2 of 4 above 35 MV/m at one point, degraded in subequent tests
Accel 10-17	8	Tested: 5 of 8 over 35 MV/m. (ACC12 and ACC14 damaged)
RI 18-29	12	Testing just started, 6 with bulk EP at RI, 6 delivered
Jlab fine-grain 1-2	2	Fabrication complete at JLAB; J2 at 30 MV/M, J1 usable?
Niowave-Roark 1-6	6	Due April 2010, 3 finished ready to ship, 3 close
Additional ARRA	20	Evaluating bids from Roark/Niowave and PAVAC
Total	88	
	36	Cavities received by end of March 2010
	23	Processed and tested
Tesla-shape single-cel	l cavities	
Description	No. Cavities	Status
AES1-6	6	tested at Cornell; further testing in progress
Accel 1-6	6	received Dec 2008; further testing in progress
Niowave-Roark 1-6	6	tested at Cornell; further testing in progress
PAVAC	4	in fabrication
Total	22	
Already Received	18	

Cavity design capabilities at Fermilab

- FNAL now has the personnel & software tools to design new cavity shapes:
 - Two good examples: the 3.9 GHz cavities and the 325 MHz singlespoke cavity (beta=0.22)
 - Electromagnetic, multi-pacting, mechanical, and thermal computations performed mainly in the Technical Division / SRF Development Dept.
 - Beam dynamics computations performed mainly in the Accelerator Physics Center
 - Mechanical design and design/drafting performed in Technical Division and Accelerator Division
- Plan to develop two new 650 MHz elliptical cavity designs for Project X
 - Beta=0.6, Beta =0.9
 - Design in collaboration: e.g. lots of expertise at JLAB, Cornell, etc
 - Fabricate in Industry (and perhaps single cells at JLAB)
 - Process in Industry & labs (ANL/FNAL , JLAB, Cornell)
 - Test at labs

- The vendors learn through experience, so in general they will improve their manufacturing processes over time
- But, feedback from the laboratories is key to obtaining performance improvements
 - Careful QA and optical inspection of incoming cavities
 - Process & test cavities quickly
- Relatively small cavity orders allow for feedback between productions
 - AES made substantial improvements in tooling and installed an electron-beam welder after their first production of 4 ninecell cavities
- Larger orders will allow us to better understand costs
- Close communication and regular visits
- Assistance from experts at Cornell and JLab
- Stimulus procurements will give cavity vendors a big boost

- Strategy on Cryomodule Industrialization
 - The value added during CM assembly is < 10% the value of the cryomodule.
 - The number we will assemble over the next few years is very small → have no plans to train industry to do assembly of ILC CM
 - Any training likely to be lost... without follow on work
 - Not even clear this would make sense for Project X volumes
- Strategy is to design CM at labs and order parts from industry

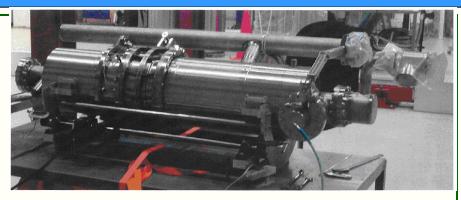
- CM1: is a TTF Type III+ and was assembled at FNAL in our CAF facility from a kit of parts provided by DESY/INFN
 - Dressed cavities from DESY
 - DESY style lever tuners
 - Magnet package located at end of cavity string (but no magnet)
 - DESY and INFN provided assistance in assembly
- CM2: will be built in 2010 at CAF.
 - Another Type III+
 - Cold mass parts were procured in Europe with help from INFN
 - Populate with U.S. processed and dressed cavities
- CM3-CM6:
 - Type IV ILC/Project X design (larger pipe sizes)
 - Magnet package can be located in positions 2,5,8 (5 = center of CM)
 - Cold mass parts ordered in U.S. industry with ILC and ARRA funds
 - Populate with U.S. processed and dressed cavities
 - CM6 will be a CW cryomodule for Project X
- Cryomodules will go to NML: will try to meet ILC S1 and S2 goals

Integrated ILC/PX SRF Plan (Cryomodules)

U.S. Fiscal Year	2008		FY09				F١	/10	FY11				FY12					FY13				F	FY14			F	Y15	
1.3 GHz																												
CM1 (Type III+)		СМ	Ass'y			Ins C		СМ Те	est																L			
CM2 (Type III+)	Omnibus Delay		P	roces	s & V	TS/Dro	ess/H	тѕ см	Ass'y	sw ap	D											Co		te RF	L			
CM3 (Type IV)		De	sign	Or	der C	av & (CM Pa	arts					2/3 CM										t @ E arame	Design eters				
CM4 (Type IV)																	swa	ap										
CM5 (Type IV)										-1	ſ		<u> </u>				swa	ap							L			
CM6 (Type IV+) CW Design															sign CM GHz CV					B	-1			tall in MTF				
NML Extension Building					Desig	In	Cons	struction																				
NML Beam											re inje m cor		instal ents	I		Bear	n Ava							· ·	stallat bacity)	tion pe)	eriods	\$
CMTF Building						0	Desig	n <mark>Con</mark>	structi	ion	,	,																
650 MHz																												
Single Cell Design & Prototype								2																				
Five Cell Design & Prototype																												
CM650_1										De	sign	-	Ord		i0 Cav Parts	/ & CN	1		ocess Dress/		1	0 CM .ss'y						
325 MHz																												
SSR0/SSR2 Design & Prototype						Design (RF & Mechanical) all varieties of Spoke Reonators						Prototype (as required)					ss & T equire			,								
SSR1 Cavities in Fabrication (14)								Procureme ady in proc			P	roce	ss & V	/TS/I)ress/l	HTS												
CM325_1									De	sign	,		Proc	cure	325 CI	M Par	ts		25 CM Ass'y			-						

Design	Procure	Process &	Assemble	Install	Commission	
		VTS			& Operate	Page
		Dress & HTS				

CM1 installed


Dressing cavities for CM2

FNAL S1 global Cavities @ KEK

U.S. Industrialization of Cryomodules

CM3-6 Parts

- He Vessels:
 - Fabricated of Titanium (like XFEL)
 - 20 already procured from Hi-Tech (4637 N. 25th Ave., Schiller Park, II 60176)
 - 40 more being procured with ARRA funds
 - Likely vendors Hi-Tech, INCODEMA (www.INCODEMA.com), Titanium Fabrication Corp. (110 Lehigh Drive, Farifield, N.J. 07004), and Titan Metal Fabricators Inc. (835 Flynn Rd., Camarillo, CA. 93012)

Tuners

- For CM2 and beyond we will use Blade tuner developed by INFN
- CM2 and S1-Global: 12 tuners provided by INFN, built in Europe
- CM3-CM6: Tuners made by U.S. industry (ARRA)
 - 20 Ti blade tuners from INCODEMA; 20 from Hi-Tech

CM3-6 Parts

- Couplers
 - Vendor is Communications and Power Industries, CPI, (150 Sohier Road, Beverly, MA. 01915-5595)
 - 12 couplers delivered for S1 global and CM2;
 - 20 more ordered via SLAC (using ARRA funds)
- Cold mass parts and Vacuum Vessels
 - 4 cryomodules worth of Type IV parts on order
 - Vendor is PHPK Technologies (2111 Builders Place, Columbus, OH 43204)

- Industrial Electro-polish
 - ARRA funds make it possible for us to develop Electro-polish capability in U.S. industry
 - Competition to perform design study; AES won the bid
 - AES will make a proposal for a horizontal EP facility
 - Capable of processing 1300 and 650 MHz elliptical cavities
 - Benefits from existing clean room, HPR, and chemistry infrastructure funded at AES by Brookhaven National Lab

Eco-friendly Surface Processing

- Funded with ARRA funds
- Goal is to produce smooth clean cavity surfaces without using HF and other toxic chemicals
- 3 companies have bid for design study
 - Will select 1 or 2
- Fund best to demonstrate performance with single cells

- Cavity procurements are needed for cavity R&D, cryomodule fabrication, and vendor development
- Fermilab is engaged in vendor development with • three North American cavity vendors:
 - AES, Niowave/Roark, and PAVAC
- We are also engaged in industrialization of cryomodule parts and cavity surface processing
- Industrialization is being funded by ARRA funds •

but one time infusion of funds

In the longer run, Project X or other similar project are the likely path to U.S. SRF industrialization for a future ILC project