## Compton Ring Study Update

#### Eugene Bulyak Thanks to: P. Gladkikh, T. Omori, L. Rinolfi, F. Zommer, A. Variola, J. Urakawa

NSC KIPT (Kharkov, Ukraine)

#### LCWS10 & ILC10, 28 March 2010

イロト イポト イヨト イヨト

## Outline

#### Reminds

- Advantages and limitations of Compton gamma sources
- Advantages and limitations of ring-based Compton sources
- Large recoils: how to coexist
- Steady–state spread
- Compton ring update
  - Laser cooling of beams in gamma sources
  - Choice of electrons energy
  - Self–sustained generation of positrons
- Summary and outlook

< ロ > < 同 > < 三 > .

### Advantages of Compton gamma sources

- Autonomous operation
  - Independent construction
  - Enables positron wing operates independently from electron's one
  - Possibility to transform positron bunches to meet the requirements
- High energy of gammas attainable with moderate energy of electrons

くロト (過) (目) (日)

#### Advantages of Compton gamma sources Gammas Spectrum and Polarization



- High polarization degree (only fundamental harmonic generating)
  - High energy gammas, g<sub>+</sub>, mostly polarized positively
  - low energy ones, g\_, negatively
- Wide gamma-ray beam, easier to collimate, lesser power density on the conversion target

イロト イポト イヨト イヨト

### Compton Rings: Advantages and Limitations

Yield (number of gammas per second)

$$\begin{aligned} \mathbf{Y} &= \sigma_{\mathrm{C}} \mathcal{P} \mathcal{G} ,\\ \mathcal{P} &= \mathbf{N}_{\mathrm{e}} \mathbf{N}_{\mathrm{las}} f_{\mathrm{col}} = \mathbf{J}_{\mathrm{beam}} \mathbf{N}_{\mathrm{las}} / \mathbf{e} ;\\ \mathcal{G}^{-2} &= (\mathbf{2}\pi)^{2} \left( \sigma'_{z}^{2} + \sigma_{z}^{2} \right) \left[ \sigma_{x}^{2} + \sigma'_{x}^{2} + \left( \sigma_{y}^{2} + \sigma'_{y}^{2} \right) \tan^{2} \phi / 2 \right] \end{aligned}$$

 $\sigma_{\rm C}$  Compton cross section,  $\mathcal{P}$  power factor,  $\mathcal{G}$  geometrical factor,  $N_{\rm e}$  bunch population,  $N_{\rm las}$  laser pulse population,  $f_{\rm col}$  frequency of bunch-to-pulse crossings,  $J_{\rm beam}$  average beam current. For storage rings

- $\mathcal{P}$  maximal ( $J_{\text{beam}} \gtrsim 1 \text{ Amp}$ )
- $\mathcal{G} = \mathcal{G}(\mathcal{P})$ ,  $\partial \mathcal{G}/\partial \mathcal{P} < 0$  geometrical factor decreases with power

イロン 不良 とくほう 不良 とうほ

Limitations and Drawbacks Principal limitations

> Large recoil while scattering off laser photons: each scattered gamma carries away the energy up to

$$\Delta \gamma \leq 4 \gamma^2 \gamma_{\text{las}}$$

(YAG laser: 20 MeV for  $E_{\rm b}=$  1 GeV, 30 MeV for 1.3 Gev, and so on)

For the next turns the electron may avoid scattering

For storage rings  $\left\langle \left(\frac{\Delta\gamma}{\gamma}\right)^2 \right\rangle = \frac{7}{10}\gamma\gamma_{\text{las}}$ 

・ロト ・回ト ・ヨト ・ヨト

# Laser Cooling in Compton Storage Rings

- Basic principles of laser cooling
  - Longitudinal: energy losses  $\propto \gamma$ , excitation independent.
  - Transversal: momentum losses mostly along the trajectory, excitation independent.
  - Multiturn recovery of losses caused by RF voltage results in stationary emittances and energy spread
- Items facilitate the cooling
  - Laser dominated losses
  - Small amplitudes of betatron and synchrotron oscillations at CP  $\rightarrow$  low transversal and longitudinal  $\beta$ -functions
  - Smallest attainable laser pulse dimensions at CP (nonlinear cooling)

Flat laser pulse also enhances the yield

ヘロト ヘアト ヘヨト ヘ

# Ring: A Method to Reduce Phase Volume Low-βs insertion



#### Steady state = balance 'heating–cooling'

- Heating (per collision) independent
- Cooling inversely prop to *β*s at CP
- Cooling inversely prop to laser dimensions at CP the height is most important

# Simulated Array of Simulated Compton Rings Lattice with laser cooling conditions: $\beta_{hor}^{cp} = \beta_{vert}^{cp} = 5 \text{ cm}$

#### Laser pulse: length 0.9 mm, width 25 $\mu$ m, height 2 $\mu$ m

| param                      | units               | spectrum    | base | beam                    |
|----------------------------|---------------------|-------------|------|-------------------------|
|                            |                     | pprox undul | ring | dynamics                |
| $E_{\text{beam}}$          | GeV                 | 0.75        | 1.06 | 1.5                     |
| $E_{gamma}^{max}$          | MeV                 | 10          | 20   | 20                      |
| $E_{las}$                  | eV                  | 1.16        | 1.16 | 1.16/2                  |
| $U_{ m rf}$                | MV                  | 141         | 200  | 200                     |
| $\epsilon_{\rm hor}$       | 10 <sup>-10</sup> m | 0.66        | 2.2  | 14.5                    |
| $\epsilon_{\mathrm{vert}}$ | 10 <sup>-11</sup> m | 1.8         | 2.0  | 5.2                     |
| $\sigma_E^{ m cp}$         | %                   | 4.7         | 5.8  | 4.7                     |
| yield                      | 1/(e turn)          | 0.14        | 0.12 | <mark>0.08</mark> /0.16 |

#### Half of particles lost in 200k turns

Verdict: No sufficient enhancement from 2 µm laser

くロト (過) (目) (日)

# Feasibility of Compton Rings

- 1 GeV storage ring with 1 μm laser optimal for polarized e<sup>+</sup> generation
- Effective generation of gammas requires laser pulses up to 0.5 J of energy.
- More gammas require more electrons and better geometry of bunches and pulses at CP
- 1 GeV Compton ring capable to produce about 1 mA of average current of polarized positrons, in a good excess of ILC/CLIC requirements

イロト 不得 とくほ とくほう

#### Self–Sustained Generation of Polarized Positrons Accumulating (pre-damping) ring acts as Compton ring



#### Steps of operation (interleave filling)

#### 1 Ignition with conventional source (hybrid target ?)

- 2 Cooling of stored bunches -> filling of empty rf-buckets, the laser on
- 3 Extraction of cooled bunches, switching the laser to 'full' buckets

イロト イポト イヨト イヨト

.. Steps 2-3 repeat in cycle (polarized positrons)

cool.

cool.

#### Self–Sustained Generation of Polarized Positrons Accumulating (pre-damping) ring acts as Compton ring

# filling amd+ct e+ linac filling

#### Steps of operation (interleave filling)

- Ignition with conventional source (hybrid target ?)
- 2 Cooling of stored bunches -> filling of empty rf-buckets, the laser on

イロト イポト イヨト イヨト

#### Self–Sustained Generation of Polarized Positrons Accumulating (pre-damping) ring acts as Compton ring



#### Steps of operation (interleave filling)

- 1 Ignition with conventional source (hybrid target ?)
- 2 Cooling of stored bunches -> filling of empty rf-buckets, the laser on
- 3 Extraction of cooled bunches, switching the laser to 'full' buckets

イロト イポト イヨト イヨト

.. Steps 2–3 repeat in cycle (polarized positrons)

000

cool.

#### Self–Sustained Generation of Polarized Positrons Accumulating (pre-damping) ring acts as Compton ring

# amd+ct e+ linac filling filling

#### Steps of operation (interleave filling)

- Ignition with conventional source (hybrid target ?)
- 2 Cooling of stored bunches -> filling of empty rf-buckets, the laser on
- 3 Extraction of cooled bunches, switching the laser to 'full' buckets

イロト イポト イヨト イヨト

Steps 2–3 repeat in cycle (polarized positrons)

# Compton Ring $\equiv$ Pre-damping/Accumulating Ring Simulated performance: 1 GeV + 1 $\mu$ m



#### Base + positrons, 2000 turns/cycle

- Extracted positron bunch
  - emittances
    - $\epsilon_{\mathrm{hor/vert}} = (22/2) \times 10^{-11} \mathrm{m}$
  - r.m.s. energy spread beyond chicanes 1 %
  - r.m.s. length 7.4 mm
- Gammas in cooling cycle
  - total # 240 per positron
  - impinged conv. target 96 (40%)

イロト イポト イヨト イヨト

oplarization 85 %



- The laser–cooling Compton rings capable to generate necessary flux of gammas in continual mode – Positron bunches resemble themselves in 1000 – 2000 turns.
- Laser cooling of bunches in the pre-damping ring is a logical upgrade from conventional to polarized positron source.

▲ □ ▶ ▲ 三 ▶ .

Miscellaneous slides

#### Outlook Problems to overcome

- Timing of the operation of positron source: Would T.Omori and L.Rinolfi consider?
- The flat and dense laser pulses with up to 0.5 J/pulse(s).
- Conventional source of gammas/positrons for ignition.
- High-voltage rf (up to 200 MV), fast kickers.
- Injection, extraction of positrons.

ヘロト 人間 ト ヘヨト ヘヨト

æ

## Determinations and assignments

- Lorentz–factor of electrons (positrons)  $\gamma = E_e/m_0c^2$
- Equivalent Lorentz–factor of laser and gamma-ray photons  $\gamma_{\text{las},g} = E_{\text{las},g}/m_0 c^2 = \hbar \omega_{\text{las},g}/m_0 c^2$
- Collision angle φ the angle between trajectories of electron bunch and laser pulse (φ = 0 for head–on)
- Scattering angle  $\psi$  the angle between bunch trajectory and gamma-ray

イロト イポト イヨト イヨト 三日

Miscellaneous slides

Transverse Laser Cooling Analytics and simulations

# Partial transverse Compton emittance

$$\epsilon_{x,z} \approx \frac{3}{10} \beta_{x,z}^{(CP)} \frac{\gamma_{\text{las}}}{\gamma}$$

#### and dimensions

$$\sigma_{\mathbf{x},\mathbf{z}}^{\mathbf{2}} = \frac{\beta_{\mathbf{x},\mathbf{z}}^{\mathbf{2}}\gamma_{\mathrm{las}}}{\mathbf{3}\gamma}$$

will help to get dense bunches to collide with the laser pulses.

- Simulations for E = 1 GeV Chicanes
  - $\epsilon_{x,z} = (21, 1.05) \, \text{nm rad}$
  - $P_{\rm las} = 0.6 \, {
    m J}, \, 5 \, \mu {
    m m} imes 0.9 \, {
    m mm}$
  - 8° crossing in (*x*, *y*) (horizontal) plane
- Results of simulation
  - $\beta_{x,z} = 0.5 \text{ m}$   $\epsilon_{x,z} = (45.6, 7.47) \times 10^{-11} \text{ m rad}$ (theo  $\epsilon_{x,z} = 1.65 \times 10^{-10} \text{ m rad}$ )

• 
$$\beta_{x,z} = 0.05 \text{ m} - \epsilon_{x,z} = (26.8, 1.9) \times 10^{-11} \text{ m rad}$$
  
(theo  $\epsilon_{x,z} = 1.65 \times 10^{-11} \text{ m rad}$ )

ヘロン ヘアン ヘビン ヘビン

ъ