

# **Power Supply System for DRFS**

Mitsuo Akemoto(KEK)

LCWS2010 Workshop in Beijing March 27, 2010



# **Design of Power Supply System for DRFS**

Failure rate ~13 times go up

Low Availability

### Parallel Connection System for 13 Klystrons

To realize high available system capable of continuous operation, which should be high-reliability and low cost

#### Main Features

- 1. Use of switching Power Supply to charge the capacitor bank
- 2. One common dc power supply with a bouncer circuit and one common modulation anode modulator
- 3. Redundancy of one unit for switching power supply and modulation anode modulator (Backup system)
- 4. Individual HV relay and CT monitor for all klystrons to separate the failed klystron from the system



### **PS system for DRFS (one unit)**

Accelerator Laboratory





# Design Parameters of PS system for DRRF (one unit)

#### MA L-band Klystron

1.3 GHz Frequency **RF** Peak Power 750 kW **RF** Pulse Width 1.5 ms **Repetition Rate** 5 Hz Efficiency 60% Beam Perveance 1.2 µP 64.1 kV Cathode Voltage Cathode Current 19.5 A

#### Switching Power Supply

| # of Switching PS | 5       |
|-------------------|---------|
| Output Power      | 50 kJ/s |
| Output Voltage    | 70 kV   |

Cathode Power Supply per 3 cryomodules In Case of a droop of 10%.

| # of Klystron      | 13      |
|--------------------|---------|
| Cathode voltage    | 68 kV   |
| Average Current    | 2.3 A   |
| Output Power       | 165 kW  |
| Peak Pulse Current | 254 A   |
| Pulse Width        | 1.7 ms  |
| Repetition Rate    | 5 Hz    |
| Capacitor Bank     | 67.2 μF |

#### M Anode Modulator

| # of MA Modulator  | 2      |
|--------------------|--------|
| Anode Voltage      | 53 kV  |
| Anode Bias Voltage | -2 kV  |
| Pulse width        | 1.5 ms |



#### LC Bouncer Circuit

| Inductance   | 8.9 mH  |
|--------------|---------|
| Capacitance  | 33.8 µF |
| Period       | 6.4 ms  |
| Peak Current | 750 A   |
| Peak Voltage | +-6 kV  |

Reduce total size of dc and ac capacitors
10 % droop design is 20% lower than 20 % droop design





### **DRFS Tunnel Layout**

#### 3 Cryomodule unit (38 m)





# **PS System for S1-Global DRFS**

- Demonstration of DRFS system with 2 klystron loads.
- To rapidly study the system and reduce its cost, No Bouncer circuit
  - Use of a thyratron switch as a crowbar circuit
- Five Switching PSs are used as a capacitor charger.
- •A droop of 5% is designed for 2 klystron loads.
- •MA modulator is based on J-Parc design.
- •MA switch uses series IGBTs.



### **PS System for S1-Global DRFS**





#### **PS Set-up for S1-Global DRFS at STF**

Accelerator Laboratory





### **R&D of Power Supply for DRFS**

#### •HV Relay Test and Development

#### 70kV HV Relay

- SF-6 gas filled
- Max current 10 A
- Operate time 20 ms
- Life 0.5 million
- Weight 336 g
- Coil 28Vdc, 1A



•Long HV Cable test

GIGAVAC G71L

•Crowbar circuit Cost down using gap switch



### **Summary**

•Proposal of PS system for DRFS is presented.

- A prototype power supply for S1-Global is under construction and will be completed in October.
- The first PS system for DRFS will be evaluated in S1-Global test.