
ILD Simulation Status and Plan

Akiya Miyamoto for ILD Software group 27-March-2010, Beijing LCWS2010

ILD Software tools

- Generators
 - Common Stdhep data
 - Whizard/PhysSim package
- Simulation: Mokka
 - Geant4 application
- Reconstruction
 - Marlin Framework
 - Reconstruction tools as Marlin Processors
 - Digitization
- Core tools
 - ◆ LCIO: standard for persistency format and event data model
 - ◆ Gear, LCCD, CED, ...
 - Grid tools and ilcsoft-install

Towards 2012

- ILD software tools has been used successfully in LOI era
 - ◆ About 50M events were produced using a realistic detector model.
 - Demonstrated physics capability of ILD detector
- For studies by 2012, our tools should be shaped up to meet RD's request,
 - "Develop a <u>realistic simulation</u> model of the <u>baseline design</u>, including faults and limitation"
 - ◆ To be used for new benchmark studies
- Plan has been discussed soon after LOI approval in various occasions such as
 - ◆ ALCPG 09
 - ◆ ILD WS in Jan. 2010
 - ◆ At bi-weekly ILD Software working group meetings.

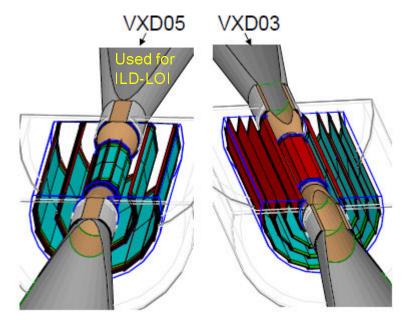
Timeline

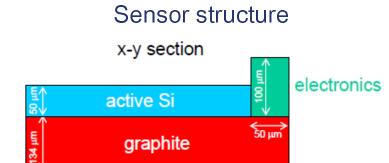
- Global plan : relative weights in each periods
 - ◆ 2012: Debug / GRID production / Analysis / Writing
 - ◆ 2011: Reconstruction / Optimize / Define baseline
 - ◆ 2010: Develop tools / Develop Simulators
- Issues being considered
 - ◆ LOI studies: detector options little impact on physics performance
 - → some MC production may be started earlier?
 - Reconstruction code developments are significant work.
 - New tracking which can handle non-uniform field, background hits
 - silicon strip tracker
 - PFA for Scintillator strip ECAL, ScSiECAL
 - PFA for HCAL (Analog vs digital) x (8-16 sided vs cylinder)
 - ◆ Hardware R&D info will come later.
 - Study for DBD should be based on the best known technologies

Timeline - 2

- Conclusion at ILDWS (Jan. 2010) was
 - to postpone the exact scheduling of mass production for DBD
 - Request each sub-detector contacts to declare their plans and schedule
 - ◆ Review the progress of code developments in mid. 2010 and re-schedule a plan of mass production.
 - ◆ Limiting factor: man power for code development and running of mass production overlaps.
 - Priority in this period is in code development, especially on simulation code.
- 17 Mar. '10:
 - Correct detailed plans from sub-groups
- Mid. 2010:
 - Software meeting to review status and progress of each plans,
 - re-consider mass production schedule

Mokka simulation

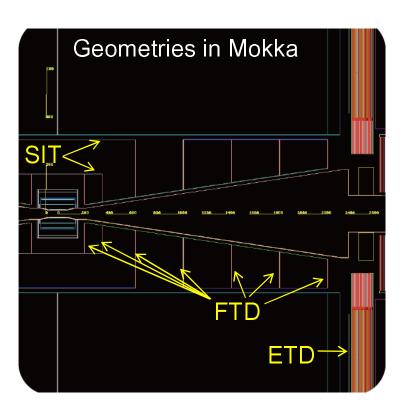

- Successfully used for LOI studies
- Currently uses Geant4 9.2
- No big revolution or reengineering foreseen in DBD study phase Major activity in Mokka world → develop sub-detector drivers
- PhysicsList
 - We have been using LCPhys physics list created by Dennis Wright (SLAC) several years ago
 - Since then many new physicslist are developed and prepared by Geant4 team.
 - ◆ Gean4 team is recommending QGSP_BERT_HP, but it seems to increase computing time significantly.
 - ◆ Other physicslist such as LHEP and Q6SC_CHIP have been used by CALICE people.
 - ◆ ILD wishes to use common physicslist with SiD for DBD studies.
 - we hope to have an agreement among LC community soon.

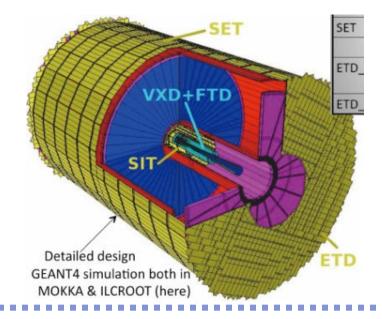


VXD in Mokka

- Two geometries are available in Mokka
 - ◆ Common to DEPFET, FPCCD, CMOS
- Cryostat is present, but cables and sensors are not addressed.
 - → to be improved for DBD
- Technology dependence:
 - May need to address thickness, pixel size, range cut, etc, for detail performance/background studies
- Digitizer
 - Smearing 3D hit points
 - ◆ DEPFET-like pixel digitizer exists.
 - ◆ CMOS-like and FPCCD-like digitizer need to be improved/developed.

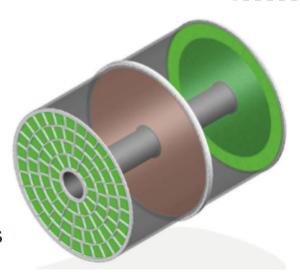
FPCCD: 27(Sat) Afternoon by K. Yoshida

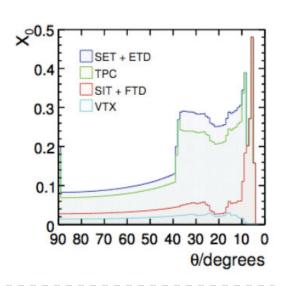




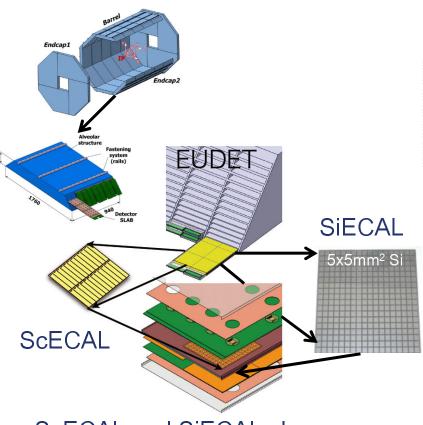
Silicon Trackers

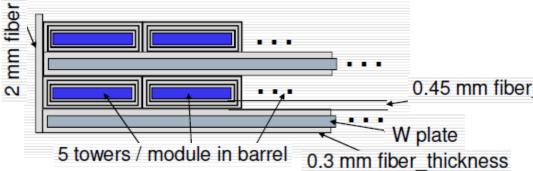
4 Silicon trackers in ILD: SIT, FTD, ETD, SET


- Cylinder/Disks → strip sensors
- Existing CAD design of them needs to be implemented in Mokka



TPC


- Materials:
 - ◆ Gas- Ar/CF4/C4H10
 - ◆ Aluminum frame, Cu & mylar cathode
 - ◆ Endplate: sequential discs of G10, Cu, Air, ...
 - cylinders: homogenous in phi (no gaps between modules)
- Materials in tracking volume is fairly realistic
- Further improved geometries for optimizations
 - More phi-dependance would be considered
 - Geometries to optimization
 - end-plate thickness: 15, 30, 45, 60% R.L.
 - TPC-ECAL gap size
- Digitization
 - Gaussian smeared by θ , ϕ , L_{drift} dependant $\sigma_{\rho\phi}$, σ_z
 - ◆ Improve parameterization by beam tests info.
- Detail simulation of charge correction will not be used mass production


ECAL

ScECAL and SiECAL share the same structure

→ SiScECAL

ECAL module side view: incl. dead spaces

- 3 options: SiEcal, ScECAL, MAPs
 - ◆ SiECAL/MAPs : realistic geom.
 - ◆ ScECAL: Si → Scinti. & ∑ tile → strip

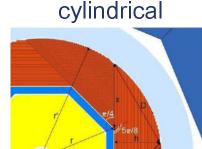
(ScECAL study: Mon. morning, K.Kotera)

- Improvements
 - ◆ SiScECAL : work in progress
- Digitization
 - ◆ Energy deposit x calibration constant

HCAL

Analog HCALActive: Scintilator

8/16-sided


Cross section of
1 module

1 layer

stainless steel
aluminium

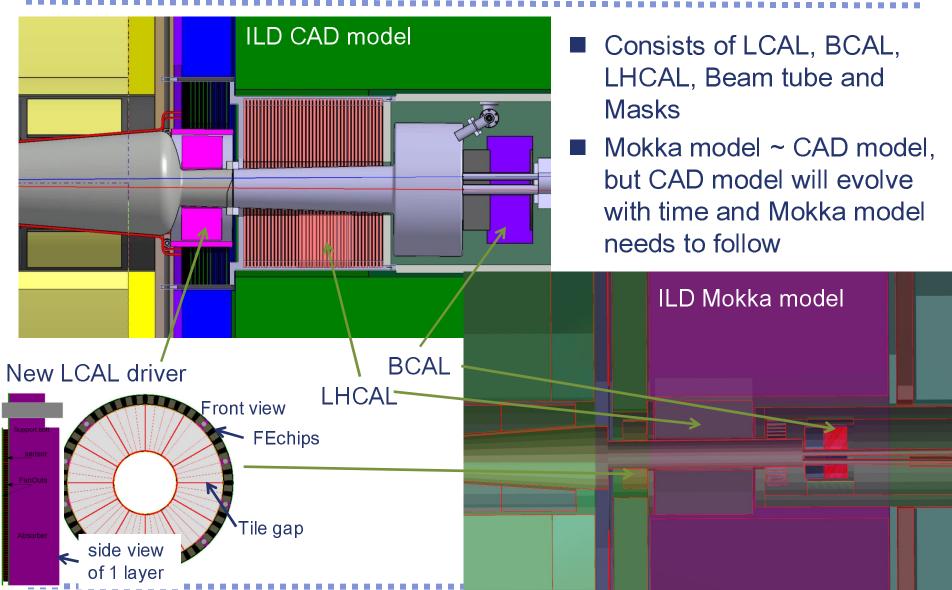
air
scintillator
(polystyrene)

Digital HCAL Active: RPC

RPC (cross view)

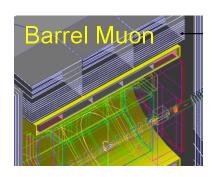
Float gap
1.2mm
Indicate the cross view)

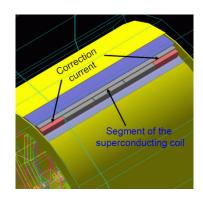
Free space

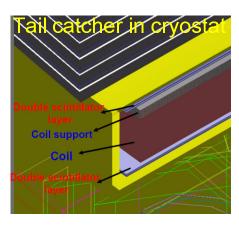

Spacer

- Realistic geometry already implemented in Mokka
- Optimizations :
 - 8/16-sided vs cylindrical & scintillator vs RPC
 - thickness (# layers), gaps, tail catchers, absorber materials,

SemiDHCAL study: (Sat) by Manqi, AHCAL study: 29(mon) by Angela

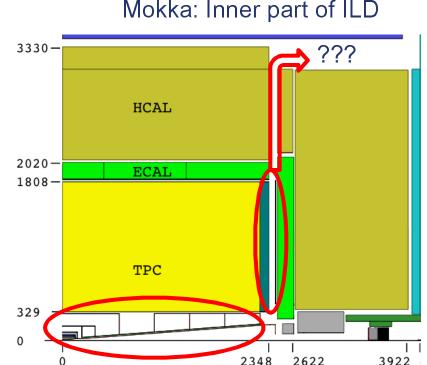

Forward detectors in Mokka





Muon system, Coil and Yoke

Updated version of the Muon system has been prepared.
Fairly detailed geometry, waiting integration in the central code



- Magnetic field
 - For LOI study,
 - uniform Solenoid field for physics study
 - approximated anti-DID field for background study
 - ◆ For DBD
 - Better anti-DID field map is necessary for performance study, at least.
 - Uniform field or realistic anti-DID:
 - need to consider balance among
 code readiness, CPU penalty, improvements in reality,

Cables/Services

- Cables, services, dead materials for data out/power in/cooling/gas flow
- sub-detector drivers implements their own materials.
- To address materials in sub-detector boundaries, small WG has been setup within ILD for
 - coordination between sub-detectors/optional detectors
 - defining layout and material budgets
 - → Implementation in Mokka will follow

Summary

- Realistic ILD model was used for ILD LOI study
- Geometry of ILD in Mokka will be improved further
 - adding new knowledge from hardware studies
 - implementing realistic cables and services
 - for optimization of detector parameters
- A plan is
 - to update Mokka soon in order to provide inputs to reconstructions
 - progress will be reviewed by mid. 2010, then MC production plan will be re-considered.

BACKUP