

2nd generation ASICs

for CALICE/EUDET

PN

Orsay Micro Electronic Group associated

CALICE physics prototypes

- 1 m³ prototype for physics tests
 - Goal : study particle flow algorithm and validate Geant 4
- SiW ECAL
 - 9 600 readout channels since 2004
 - FLC_PHY3 chip [LAL] 18ch analog
- 1 m³ Analog HCAL : tiles + SiPM
 - 8400 channels since 2005
 - FLC_SiPM chip [LAL]
- 1 m3 Digital HCAL : RPCs
 - 400 000 readout channels
 - DCAL chip [FNAL], 64ch 0.25µm
 - In fabrication, see talks by J. Repond and H. Weerts
 - Alternative R&D with GEMs & µMegas : see talks by A. White and M. Chefdeville

28 mar 2010

Second generation ASICs

- Add auto-trigger, analog storage, digitization and token-ring readout !!!
- Include power pulsing : <1 % duty cycle
- Address integration issues asap
- Optimize commonalities within CALICE (readout, DAQ...)

28 mar 2010

HARDROC: HAdronic Rpc Digital ReadOut Chip

- Variable gain (6bits) current preamps (50Ω input)
- Auto-trigger on ½ MIP
- Store all channels and BCID for every hit. Depth = 128 bits
- Data format : 128(depth)*[2bit*64ch+24bit(BCID)+ 8bit(Header)] = 20kbits
- Power dissipation : 1.5 mW/ch (unpulsed)-> 7 µW with 0.5% cycle
- Large flexibility : >500 slow control settings
- SiGe 0.35µm sept 06 and june 08

LCWS 2010

Trigger efficiency measurements

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

<u> Mega</u>

TOWARDS A TECHNOLOGICAL PROTOTYPE Omega

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

Digital data path

- Low power token ring transmission
- Open collector bus, scalable to several meters. 1 V swing.
- Redundant data lines
- Clock power management incorporated in chip
- <u>Readout and DAQ2</u> validated with µMegas and RPC m² detectors
- Important issues with PCB design

mega

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

Power pulsing on Hardroc 2 ASU : Power consumption

Power pulsing tested at detector level by IPN Lyon Bias decoupling capacitors removed : performance unchanged "Awaking time" = 20 μ s

Power pulsing gives 80% power reduction. Goal is 99.5 !

10 μ W/ch => 24h operation of full slab with 2 AAA batteries !

HaRDROC status

- 10000 HARDROC2B in production in march10
 - Ready to equip one large m³ RPC prototype
 - See talks by K. Belkadhi and N. Lumb
 - Chips expected in june 2010
 - Detector assembly by autumn 2010
- HR2B not optimized for micromegas
 - Late information on signal amplitude and speed (150 ns)
 - => Thresholds around 2 fC
 - => slower "fast" shaper needed
 - Needs charge preamp
 - => High voltage protection studies are
 - mandatory, combined with preamp
 - Joint development with LAPP Annecy of chip combining DIRAC front-end preamplifier and HR2B backend, expected for june 2010
 - See talk by M. Chefdeville

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

Channel number

nega

AHCAL: Technological prototype

- SiPM detector: 40 layers of 1.5 m² 2 cm thick steel plates interleaved with cassettes of 296 scintillating tiles (3x3 cm²) readout by SiPMs
- FE Chip embedded inside the detector
 - Thickness:critical issue: Mother boards (HBU) are sandwiched between 2 absorber plates

Mephy SiPM

28 mar 2010

SPIROC main features

- Internal input 8-bit DAC (0-5V) for individual SiPM gain adjustment
- Energy measurement : 14 bits
 - 2 gains (1-10) + 12 bit ADC: 1 pe → 2000 pe
 - Variable shaping time from 50ns to 100ns
 - pe/noise ratio : 11
- Auto-trigger on 1/3 pe (50 fC)
 - pe/noise ratio on trigger channel : 24
 - Fast shaper : ~10 ns
 - Auto-Trigger on ½ pe
- Time measurement : 1 ns
 - 12-bit Bunch Crossing ID
 - 12 bit TDC step~100 ps
- Analog memory for time and charge measurement : depth = 16
- Low consumption : \sim 25 μ W per channel (in power pulsing mode)
- Individually addressable calibration injection capacitance
- Embedded bandgap for voltage references
- Embedded 10 bit DAC for trigger threshold and gain selection
- Multiplexed analog output for physics prototype DAQ
- 4k internal memory and Daisy chain readout

reaa

SPIROC : One channel schematic

Analog Performance

<u> Mega</u>

Cf = 700fF ,Tau=50ns Cc-100pF, 20dB

SiPM 753 SPIROC HG 100fF 50ns external hold

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

Internal 12-bit ADC performance

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

14

SPIROC status

- 50 chips SPIROC2 produced in june 2008 to equip AHCAL and ECAL EUDET modules
 - Package TQFP208 (w=1.4 mm)
 - Difficult slow control loading (cf HR2b)
 - Measurements gradually coming in
 - Collab LAL, DESY, Heidelberg
 - New preamp developed in Heidelberg [Wei Shen] for lower gain SiPM
 - See talk by R. Fabbri

©M. Reinecke (DESY)

mega

• External users :

 astrophysics PEBS (Aachen), medical imaging (Roma, Pisa, Valencia...), nuclear physics (IPNO), Vulcanology (Napoli)

Single-Photon Peaks I

Mathias Reinecke | HCAL main meeting - Hamburg | Dec. 10th, 2009 | Page 16

Spiroc pending issues

- Autotrigger mode
- Linearity
- Power pulsing
- Time measurement

mega

- 2 versions have been fabricated for EUDET
 - SPIROC2A : same as v2, slow control fixed
 - SPIROC2B : individual gain adjustment

SKIROC status

- SPIROC2 used as SKIROC emulator
 - only preamp differs
 - 36 channels instead of 64
 - Limited dynamic range (~500 MIPs)
 - Tests starting with FEV7 to address embedding issues
 - Noise tests on testboard proceeding (ENC ~ 1 ke-)
- SKIROC2 submitted with production run
 - 64 channels, 70 mm²
 - Very large dynamic range: HG for 0.5-500 MIP, LG for 500-3000 Mip
 - Testability at wafer level

mega

28 mar 2010

CdLT : ASIC developments in CALICE/EUDET

SKIROC2 One channel block scheme

Conclusion

- Chips in production for technological prototypes
 - Chips expected june 2010
 - Detector assembly fall 2010
- Lots of important tests ahead
 - Power pulsing
 - Coherent noise
 - Power dissipation
 - timing
 - System aspects
 - DAQ

()mega

28 mar 2010

Test beam with technological prototype

- Data rate (Spiroc/Skiroc) : naive estimate
 - Volume : 36ch*16sca*50bits=30 kbit/chip
 - Conversion time : $16*100 \ \mu s = 1.6 \ ms$
 - Readout speed 5 MHz (could be increased to 10-20 MHz)
 - 8 chips/DIF line (one FEV only)
 - Total : 1.5ms + 30000*200ns*8 = 50 ms/16 events = 3 ms/evt => 300
 Hz during spill

Note : readout electronics designed for ILC low-occupancy, low rate detector **#Testbeam** !!

()mega

Read out: token ring

- Readout architecture common to all calorimeters
- Minimize data lines & power

mega

Data bus

Chip 0	Acquisition	A/D conv.	DAQ	IDLE MODE			
Chip 1	Acquisition	A/D conv.	IDLE	DAQ		IDLE MODE	
Chip 2	Acquisition	A/D conv.	IDLE			IDLE MODE	
Chip 3	Acquisition	A/D conv.	IDLE			IDLE MODE	
Chip 4	Acquisition	A/D conv.	IDLE		DAQ	IDLE MODE	
	1ms (.5%)	.5ms (.25%)	.5ms (.25%)		199ms (99%)		
1% dutý cycle				99	99% duty cycle		
28 mar 2010 Cdl T · ASIC (developments in CALICE/ELIDET		т І	LCWS 2010		