

Overview of the RPC DHCAL Project

José Repond Argonne National Laboratory

SiD Meeting International Linear Collider Workshop 2010 Institute of High Energy Physics Beijing, People's Republic of China March 10 – 12, 2010

RPC DHCAL Collaboration

<u>Argonne</u>

Carol Adams Mike Anthony Tim Cundiff Eddie Davis Pat De Lurgio **Gary Drake Kurt Francis Robert Furst Vic Guarino Bill Haberichter Andrew Kreps** Zeljko Matijas José Repond **Jim Schlereth** Frank Skrzecz (Jacob Smith) (Daniel Trojand) **Dave Underwood** Ken Wood

Lei Xia Allen Zhao

<u>Boston University</u>

John Butler Eric Hazen Shouxiang Wu

<u>Fermilab</u>

Alan Baumbaugh Lou Dal Monte Jim Hoff Scott Holm Ray Yarema

IHEP Beijing

Qingmin Zhang

University of lowa

Burak Bilki Edwin Norbeck David Northacker Yasar Onel

RED = Electronics Contributions GREEN = Mechanical Contributions BLUE = Students BLACK = Physicist

‡ Fermilab

McGill University

François Corriveau

Daniel Trojand

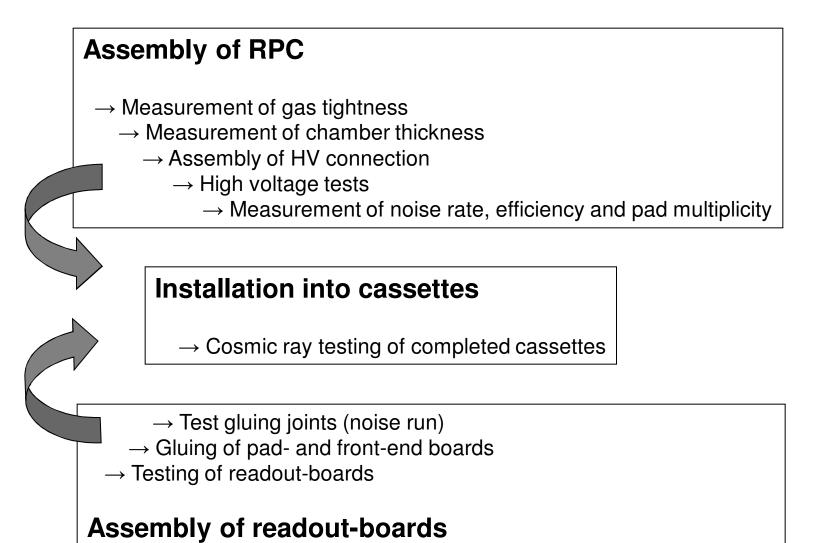
UTA

Jacob Smith

Jaehoon Yu

Institute of High Energy Physics Chinese Academy of Sciences

Current status


R&D phase	Refereed papers	Status
Initial RPC studies with analog readout	1 Nucl. Instr. Meth.	Completed
Vertical slice test with digital readout	5 JINST (last paper published on February 24, 2010) 1 st PhD thesis completed	Completed
Physics prototype	-	Ongoing
Technical prototype R&D	-	Nothing much yet

Physics prototype construction status

Task	Status	Comment
RPC construction	40% done	Much more tedious than anticipated
Cassette construction	Design complete 1 st prototype assembled Material in hand, design not yet blessed	Costly, but not very labor intensive
Front-end electronics	Prototypes fully debugged Boards in fabrication	Pursued a very conservative approach
Back-end electronics	DCOL 100% done New TTM in fabrication	
Low voltage	Power supplies in hand 1 st distribution box assembled and tested Parts for all units on order	
High voltage	Units in hand Computer controlled program completed	
Gas system	Gas mixer completed and tested Decision to built 2 nd distribution rack Parts on order (partly in hand)	
DAQ software	Implemented into CALICE framework 99% complete	
Event builder and display	Event building started Event display complete	
Data analysis	Started to reconstruct tracks in CR data	Lots of experience from VST
Simulation	RPC response simulated Implementation of DHCAL into MOKKA ongoing	

Construction steps and quality assurance

Construction: a few early comments...

RPC assembly

Very labor intensive (not expected to be so bad) Precision at < 100 µm level needed Glass is cheap, but also breaks (we are learning) Glass spraying has been a struggle

Current assembly technique not viable for ILC type calorimeter (x 100 larger)

But current activity invaluable for the development of future assembly techniques

Electronic readout

Worry about being overwhelmed with rare errors in large system (400,000 channels) Opted for VERY conservative approach Detailed (torture) tests at every step in the design and prototyping process Confident that this will pay off

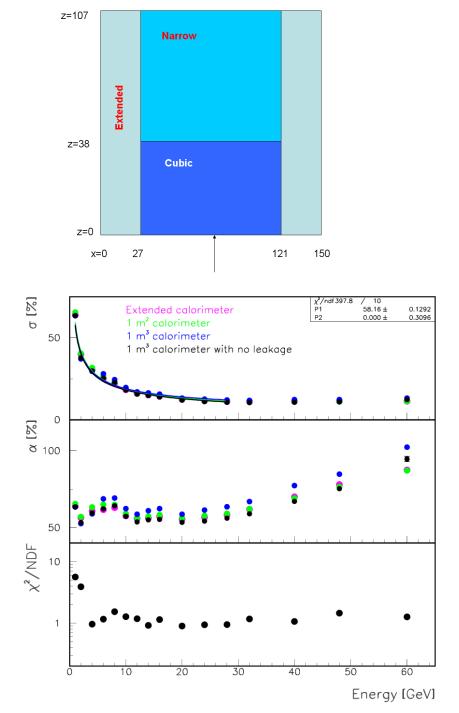
Unless you build a larger system you'll never know where the real problems are It is not possible to foresee every problem

Physics prototype plans

Task	Dates	Comments	
Construction	Complete by June 30 th	Should not slip much more	
Cosmic ray testing of cubic meter	April through August		
Installation into Mtest	in September		
1 st data taking period	October	DHCAL standalone (with TCMT)	Officially on Mtest schedule
2 nd data taking period	December	Combined with ECAL	
3 rd data taking period	Early in 2011	DHCAL standalone or combined	
Disassembly and shipping of stage	March 2011	Hard deadline	Maybe not so hard

Simulation

RPC response


Detailed simulation in standalone program

Cubic meter response

Studied under various conditions

Predicted resolution

For contained events expect 58%/√E up to 28 GeV
Resolution degrades at higher energies due to staturation (smaller than 1 x 1 cm² pads needed)
To 1st order resolution does not depend on efficiency and pad multiplicity

R&D beyond the physics prototype

1-glass RPCs

Will built a few prototypes with current electronics

Next version of DCAL chip

Complete redesign envisaged Explore recent developments of ultra-low power consumption circuitry Most likely will not pursue power pulsing (low efficiency for cosmic rays, CLIC?)

High/low voltage supply and distribution

Nothing concrete yet

Gas flow/recycling ...

Gas recycling

Our preferred gas

Gas	Fraction [%]	Global warming potential (100 years, $CO_2 = 1$)	Fraction * GWP
Freon R134a	94.5	1430	1351
Isobutan	5.0	3	0.15
SF ₆	0.5	22,800	114

Physics prototype

Gas volume ~ 40 liters Need approximately 10 volume changes/day \rightarrow 400 liters/day Testbeam: Operate for say 4 months \rightarrow 48,000 liters of mixed gas Corresponds to 45,000 liters or 190 kg of Freon R134a which corresponds to 275 tons of CO₂ 275 tons of CO₂ are emitted from 30,000 gallons of gasoline Assuming 25 mpg, our emmission corresponds to driving your average car 30 times around the globe

This is not good, but also not disastrous

ILC detector type hadron calorimeter

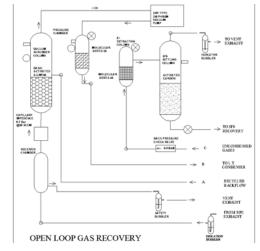
Gas volume \rightarrow x 100 Data taking: Operate for say 6 years \rightarrow x 20 Our emmission will correspond to driving 50,000 cars around the globe

Obviously we need recycling, also to contain the cost

Two approaches to recycling

Closed circuitry adopted by LHC community Open circuitry investigated by INO (Indian Neutrino Observatory)

Closed circuitry


Capture the gas, filter out toxins, and reuse Currently not succesful, due to additional contaminants introduced by filters

Open circuitry

Freeze out Freon, Isobutan and SF_6 using different condensation temperatures, remix and use Complicated system!!!!

Currently problems with plumbing (air in the system)

We have established some contact and hope to be able to collaborate in the future

