R&D Advances: SiW Calorimeter

LCWS 2010 Beijing SiD Concept Meeting March 28, 2010 John Jaros for SiD SiW Group (thanks to Ray, Ryan, Mani, and Marco for slides)

SiD SiW Group

- **Pixel Detector Development and Readout** U Oregon (Brau, Frey, Strom)
- KPiX Readout Chip and Mechanical Prototype SLAC (Breidenbach, Freytag, Graf, Haller, Herbst, Jaros, Nelson) BNL (Radeka) LAPP, Annecy (Karyotakis)
- Bump Bonding and Flex Cables UC Davis (Lander, Tripathi, Holbrook)
- MAPS Alternate (not covered in this talk) RAL (Stanitzki, Strube, Tyndal)

GOALs:

Develop a Silicon-tungsten Electromagnetic Calorimeter for SiD

Produce a Test Module (employing "real" detector technologies) for Beam Test 2010-2011

Si-W Calorimeter Concept

Baseline configuration: transverse seg.: 13 mm² pixels longitudinal seg: $(20 \times 5/7 X_0)$ $+(10 \times 10/7 X_0)$ \Rightarrow 17%/sqrt(E)

 \cdot 1 mm readout gaps \Rightarrow 13 mm effective Moliere radius

Sensor Status

Have Hamamatsu sensors in hand
 10- V1 used for interconnect studies
 40- V2 under test and for prototype

 Plan for this Spring.
 With a 512-channel KPiX-9 bump-bonded to a sensor, get noise measurements for the full range of input capacitances and resistances.

V2 Sensor

Initial studies of version 2 sensors

KPiX Status

- KPiX-8 (256 channel) under test.
 - Noise measurements
 rms = 1300 e- (5% mip)
 OK for Ecal
 - * 40-50 mW/1000 channel
- KPiX-9 (512) just arrived SLAC. Design includes
 - * Further noise reduction
 - * Power reduction (->20 mW)
 - * More input protection for GEMs
- KPiX-10 (1024) order Summer '10

Readout gap cross section (schematic)

Interconnect issues: Technologies being considered			
	Prototyping	Production	
KPiX to Sensor	Gold Stud Bonding (Epoxy/Thermo-compression)	Indium/Solder Bump Bonding	
Flex Cable to Sensor	Solder Balls Conducting Epoxy Anisotropic Conducting Film (ACF)	ACF?	
Flex Cable		Gold Studs	
	KPiX readout Chip		
Indium/Epoxy	Silicon Detector Wafer	ACF/Epoxy/Solder	

KPiX with Gold Studs

Gold Stud Attachment

Three possibilities:

- Conducting Silver Epoxy. High degree of bump height uniformity required. No limit on number of bumps. Low temp and pressure. Good success for large pads (>100 um). Work in progress for 50 um pads.
- 2. Thermo-compression. Typically, high temp and pressure: 300-350C and 150-200g/bump. Machine limit ~100-200 kg => Limits total number of bumps.
- 3. Thermosonic. Lower temp and pressure: 150C and 75g/bump. Limit on total number of bumps because of the limit on total deliverable ultrasonic power without breaking the chip.

gold-stud attachment via thermo-compression – preliminary results

bump bond id

- 160 g/bump provides acceptable resistances for all bumps
- 100 g/bump was insufficient: 4 of 20 bumps were ~open
- Further study required:
 - Explore pressures greater than 160 g/bump
 - Pressure > 1 GPa gives some punchthrough of SiO2 between sensor metal layers – need to optimize temperature (gold softness) and Press

Thermoplastic Conducting Adhesive (ACF)

<u>Btechcorp:</u>

Metal fibers in a matrix $\sim 2 \times 10^7$ fibers/in²

Low Cure pressure: 50 psi

40

30

20

10

0

0

500

1000

Pad Area (sq mil)

1500

Resistance (mM)

2000

achievable.

ECAL Mechanical prototype

Plan to make a full scale prototype, full width, full thickness, short zee length

Stainless steel in place of Tungsten

We have 30 plates SS304L, 36"x48"

Perfect Test bed for

the small screws design

The integration of the electrical interconnections

the cooling cold plates

ECAL Mechanical prototype

ECAL Mechanical prototype

Summary goals, progress, plans

	Year 1 (7/2009–7/2010)	Year 2 (7/10-7/11)	Year 3 (7/11-7/12)
Goal	Complete R&D on component technologies	Assemble test module, start beam test	Beam test, data analysis
Status	 Sensors – OK Tungsten – OK KPiX – 512 channel chip to be evaluated. If ok, order 1024 KPiX. KPiX-Si bumps: need to converge on technology – gold stud thermo-compress? Flex cable – ok Cable-Si connect: needs R&D – ACF? 	Need the integrated tests first. Flex cable can be done separately; same for DAQ	tbd
Plan	 Have 1024 KPiX and bumping technology by summer for combined testing in lab. (512 KPiX would be ok for initial combined tests.) indium/solder bb as fallback for gold studs Need to finalize cable-Si technology 	If integrated tests look OK, begin planning for beam test. Assume SLAC beam for now.	tbd