NML - RF Unit Test Facility at Fermilab

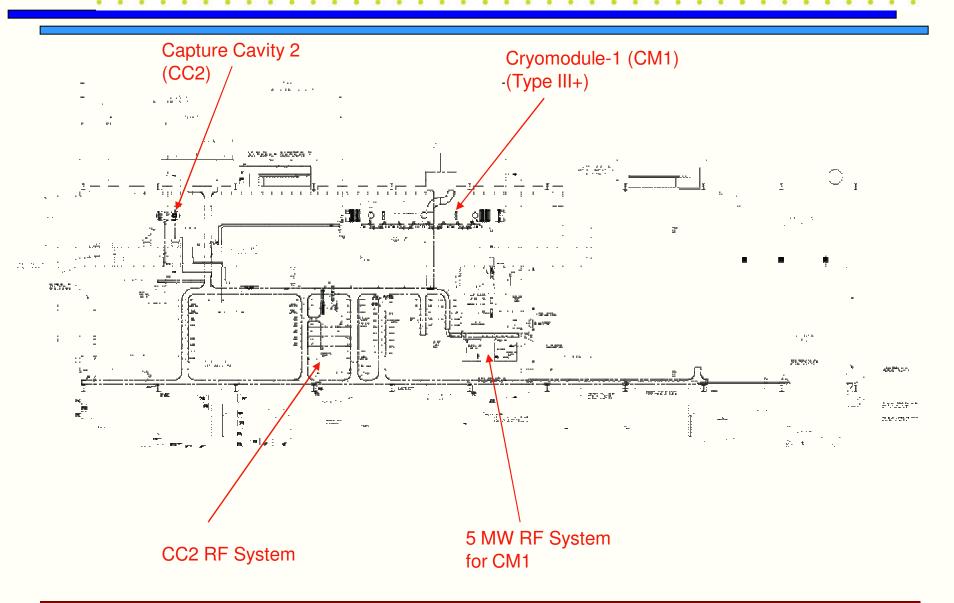
Bob Kephart March, 2010

(Acknowledgements: Jerry Leibfritz and Elvin Harms)

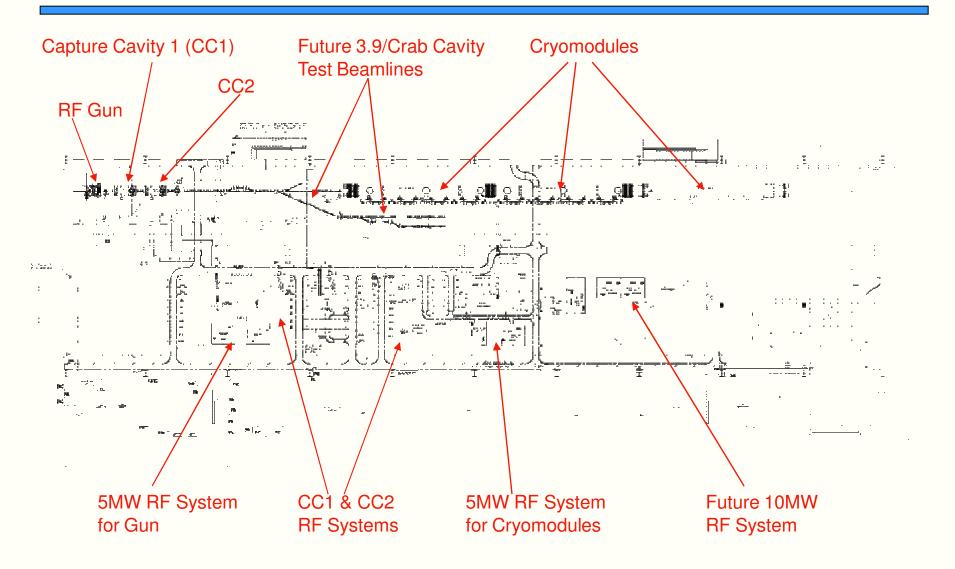
NML Project Overview

Overall Goals

- Build an RF Unit Test Facility at the New Muon Lab (NML)
 - ILC RF Unit = 3 cryomodules
 - 10-MW RF system
 - Beam with ILC parameters (3.2 nC/bunch @3 MHz, Up to 3000 bunches @ 5Hz, 300-µm rms bunch length)
- Build Test facilities for Project-X cryomodules
- Phase-1 (FY07 FY10)
 - Prepare facility for testing first cryomodule (CM1) without beam
 - Infrastructure, RF power, cryogenics (Tevatron satellite refrigerators #1 & #2)
 - Install first cryomodule (CM1) and Capture Cavity-2 (CC2), cooldown, and RF test


NML Project Overview

- Phase-2 (FY10 FY11)
 - Prepare for first beam
 - Civil construction to expand facility (capability for 2 RF units)
 - Move parts from FNPL photo-injector to NML
 - Install new gun, injector, test beamlines, beam dump
 - Install/test second cryomodule (CM2)
- Phase-3 (FY11 FY14)
 - Complete RF Unit
 - Upgrade RF system to 10 MW, install third cryomodule (CM3)
 - Commission new Cryogenic Plant
 - Operate full RF Unit with beam
 - Begin installation of 2nd RF Unit


Phase-1 Layout of NML

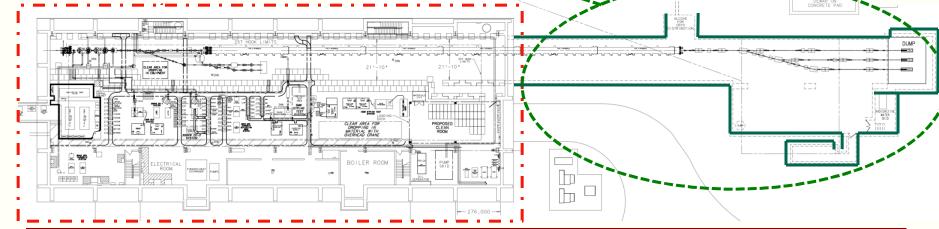
Phase 2/3 Layout of NML Building

Expansion of NML Facility

OFFICE

lo.

New Cryoplant & CM Test Facility

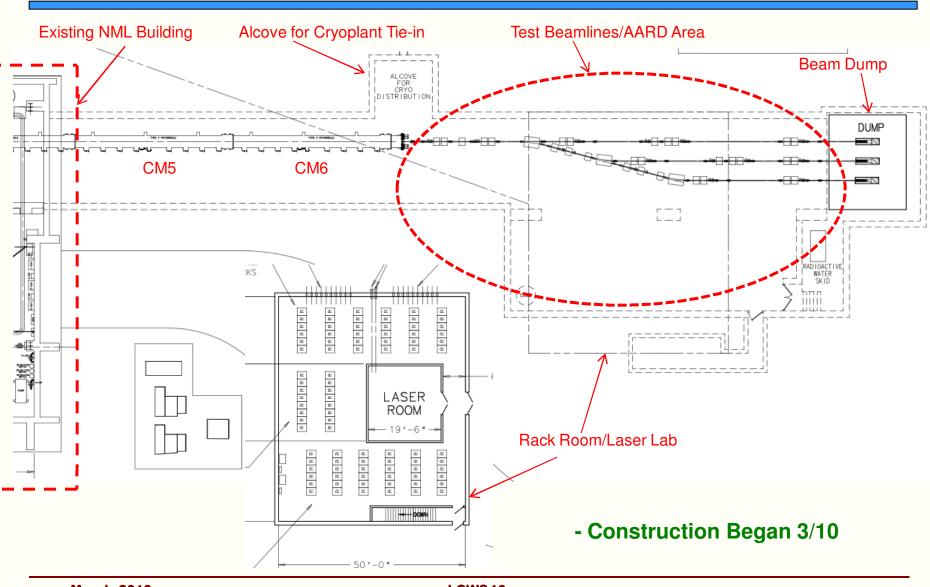

(300 W Cryogenic Plant, Cryomodule Test Stands, 10 MW RF Test Area)

Funded by ARRA

New Underground Tunnel Expansion

(Space for 6 Cryomodules (2 RF Units), AARD Test Beam Lines)

Existing NML Building


Future NML Complex


NML Expansion

NML Technical Progress

NML Infrastructure (FY07-08)

- Completed Removal of Chicago Cyclotron Magnet
- Prepared Building Infrastructure
 - AC power, network cabling, piping, cable tray, air ducts
 - Cleaned out building, epoxy coated floor, alignment network
 - Cave for Phase-1 (~3/4 of full cave), electrical racks
 - Reused existing equipment (tray, racks, piping, shield blocks, gas storage tanks, cryo heat exchangers & refrigerator components)

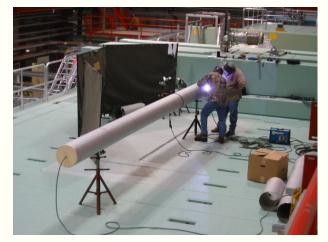
NML During Removal of Chicago Cyclotron Magnet(CCM) (September, 2006)

NML Facility after CCM Removal and Floor Painting (February, 2007)

Recent Picture of NML Facility

View From North

NML Expansion Construction


Loading Dock Demolition

Cryo Pipe Installation

NML Cryogenic System

NML Cryogenic System Plan

- Start with two 625 W (4K) Tevatron satellite Refrigerators and large vacuum pump (~ 100 W at 1.8 K)
- Move 1500 W (4 K) BABAR refrigerator from SLAC
- Add new 300 W (1.8 K) refrigerator

Status

- Installed Refrigerator room & helium storage tanks
- Tevatron Satellite Refrigerator #1 operational 8/07
- Tevatron Satellite Refrigerator #2 installed 7/09
- Distribution system
 - Feedbox, Feed Cap & End Cap installed
- Vacuum pump and Frick compressor
- Capture Cavity-2 (CC2) Cooled to 2K 10/09
- Cryomodule-1 (CM1) Cool down to 2K Spring, 2010

NML Cryogenic System

NML RF Systems

RF System

- 5 MW for CM1
 - Commissioning underway
- 300 KW for CC2
 - Fully Operational
- Distribution
 - CM1 distribution from SLAC (in-house)

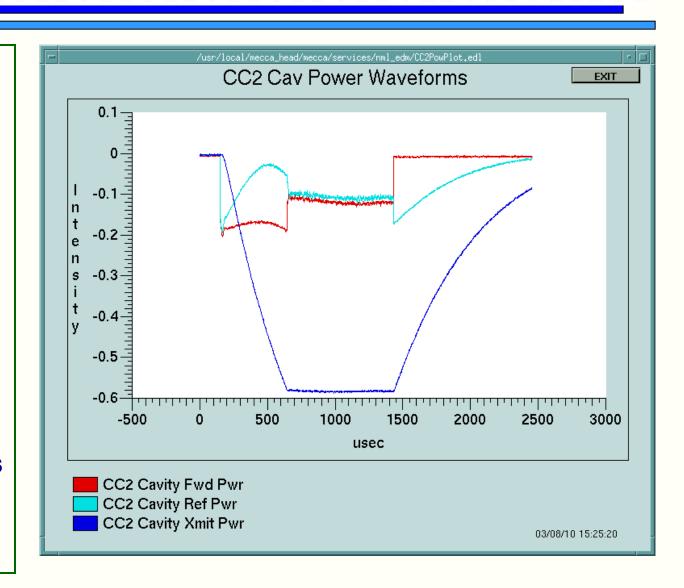
CM1 moving to NML

NML Accelerator

Injector

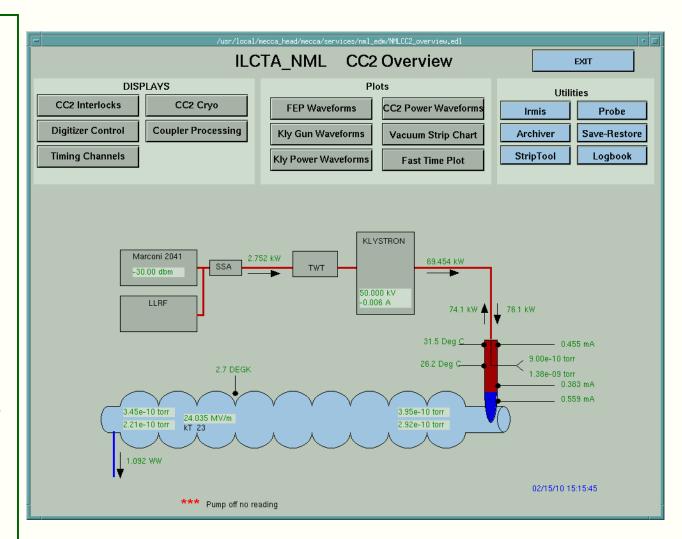
- Detailed Lattice designed
- New gun system being installed
 - Collaboration with DESY, KEK & INFN
- CC2 (single 9-cell cavity) operational 10/09
- Accelerator
 - CM1 installed, aligned, and under vacuum
- Test Beamline
 - Beamline layout complete
 - Beam Absorber analysis complete

CC2 Operation At NML

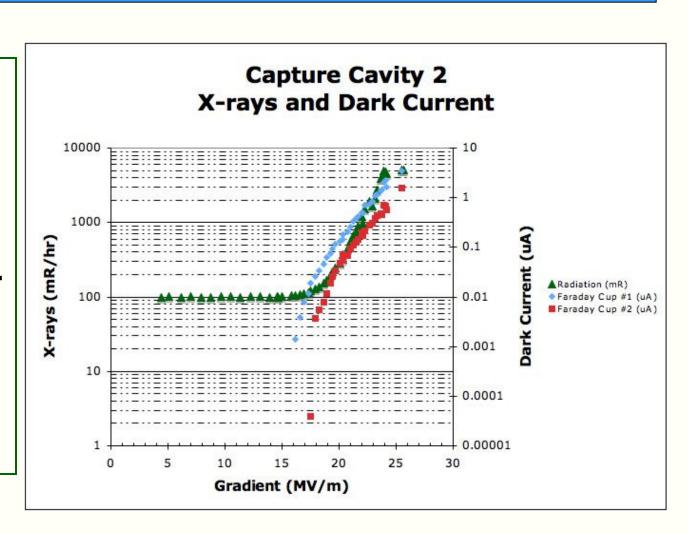

- Moved from MDB to NML 2/09
- Installation complete (vacuum, cryo., alignment) 6/09
- First warm RF powering 6/09
- Coupler conditioning complete 7/09
- CC2 operated at 2 Kelvin 10/09
- 24 MV/m gradient (limited by Coupler PM Tube trips) 2/10
 - Similar to performance in MDB
- Current Plans
 - Operate at 4.5 K until construction allows resumption of 2K ops
 - Studies of Low Level RF system and tuner, microphonics and Lorentz Force Detuning Compensation
 - Resume 2K operation after construction, prior to CM1 cooldown

CC2 Operations at NML

Regulated operation


- LLRF
 feedback
 and
 feedforward
 enabled
- 1.3 mspulse width
- 5 Hz
- 20 MV/m
- Limitation is Coupler

CC2 Performance at NML


- Peak gradient - 24 MV/m
- Limited by Coupler activity
- $Q_L = 2.92 X$ 10^6
- Similar performance as at MDB previously

CC2 Performance at NML

- Onset of field emission ~16 MV/m
- Similar threshold for dark current
- Largest amplitude at Coupler end

CM1 Test Plan

- Virtually identical to DESY run plan for XFEL modules (courtesy of Dennis Kostin) and Fermilab experience at HTS and CC2
- TEST PROCEDURE:
 - 1. RF Cable Calibration
 - 2. Technical Interlock / Sensor checkout
 - 3. RF source / Waveguides / LLRF
 - 4. Warm Input RF Coupler Conditioning
 - 5. Cooldown to 2K
 - 6. Cavity Spectra measurements
 - 7. Cavity Tuners Test and Tuning
 - 8. Coupler Q_{load} measurement
 - 9. Set Cavities On Resonance
 - 10. Cold Input RF Coupler and Cavity Conditioning
 - 11. Module Performance Measurement
 - 12. Single Cavity Measurements
 - 13. Cryo system performance test (if needed).
- Expect 2-3 weeks to complete run plan

CM1 Test Plan

- Our first goal is to understand the performance of cavities in CM1 compared to HTS tests at DESY
 - We want to verify our assembly techniques in CAF
- Note that the dressed cavities provided by DESY for CM1 are NOT 35 MV/M cavities
 - We do not expect to meet the S1 goal of 31.5 MV/M
 - Average of Chechia tests is 23.5 MV/M
 - Anything close to this number will be a great success

	Z89	AC75	AC 73	Z106	Z107	z91	z91	S33
Eacc max [MV/m]	23.5	22.5	30.6	33.5	36.5	31.1	28.5	26.6
Fe onset [MV/m]	> 23,5	>22,5	25.83	21	30.6	25.6	20	19.28
Eacc @ 1Exp-2 mGy/min	> 23,5	>22,5	28.6	27	32.4	29.7	24.41	23,48

 It would be useful to understand what other tests might be useful for ILC with CM1

NML Auxiliary Systems

Vacuum System

- Low-particulate vacuum cart built and tested
 - Leak detectors, RGA's, pumps, gauges, controls
- (4) portable cleanrooms built (capable of achieving Class-10)
- CM1 cavity string, and coupler systems under vacuum (10⁻⁹ Torr)

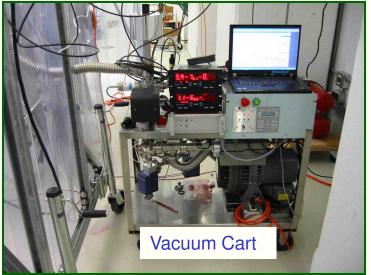
Water Cooling System

- System design complete
- New pumps and heat exchanger installed
- Temporary skid (for Phase-1) operational

Safety Systems

Radiation, ODH, Interlock, and Safety Assessment documentation being prepared

NML CM1 Vacuum Work



NML Auxiliary Systems

NML Controls/Instrumentation

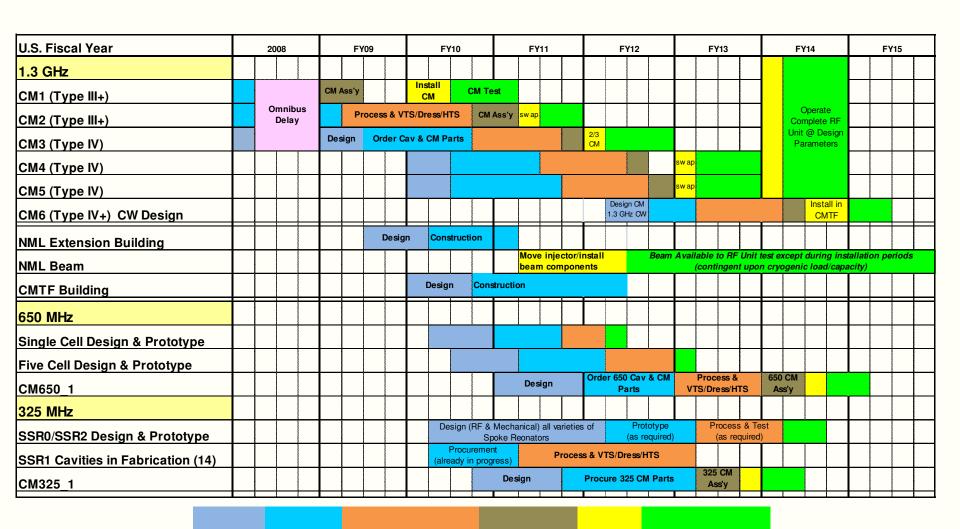
Controls

- Control Room finished and operational
- Wireless network installed throughout building
- Instrumentation
 - Wire Position Monitors for CM1 tested and installed in Endcaps
 - Faraday Cups assembled
 - RF protection/interlock system complete

Before

After

NML Schedule/Milestones


(2010)

•	Phase-1	Cryogenic System	Operational	(Aug. 2007)	
---	---------	-------------------------	-------------	-------------	--

- Delivery of First Cryomodule to NML (Aug. 2008)
- Begin Civil Construction of NML Expansion (March 2010)
- First Cryomodule Ready for Cooldown (Spring 2010)
- Cold RF Testing of First Cryomodule (Summer 2010)
- Start Construction of CMTF Building (Fall 2010)
- Delivery of 2nd Cryomodule to NML (S1)
- Install Injector & Test Beam Lines (2011)
- First Beam (2012)
- New Cryoplant Installation/Operation (2013-14)
- RF unit test with beam (2014)

Integrated SRF Plan (Cryomodules)

Assemble

Install

Process &

VTS

Dress & HTS

Commission

& Operate

Page 30

Design Procure

Conclusions

- RF unit test facility at NML is a new large facility under construction at FNAL in support of ILC and Project X goals
 - Delayed by Omnibus bill more than a year
 - ILC/SRF funding has been restored
 - ARRA funds are a huge boost
- NML Cryogenic and RF Operations have begun
 - Tests of CCII and CM1 this year
- Several opportunities to meet ILC S1 goal over next couple of years
- Full test of ILC RF unit (S2 goal) by 2014