

Single-Tunnel Accelerator Configuration Of Asian Region

Atsushi Enomoto (KEK)

Contents of this talk

- Development of TDP2 design concepts
- Applicability of RDR Design to Other Sites
- Preliminary Study By TDP2 Concepts
- Cost Impacts (Very preliminary)
- Summary

Development of TDP2 design concepts

Keypoints for TDP2 Design Concepts

Cost Reduction from RDR

(Deep) Single-Tunnel Accelerator Configuration

Should be harmonized (balanced) with

Applicability to Site and Environmental Conservation

- Less surface facilities and plants
- Life Safety / Accessibility to Underground Accelerator
 - Enough evacuation / access passages
- Risk reduction for tunnel excavation
- Heading for the main accelerator tunnel
 Advantage of Topology
 - Spontaneous drainage of sump water

Contents of the TDP2 Design Concepts

Single-Tunnel Accelerator Configuration

Focus on the DRFS scheme

Less surface plants and facilities

- Avoid large-scale site developments
- Reduce access shafts/tunnels from the ground

Enough Access / Evacuation Passages

- Keep a sub-tunnel along the accelerator
- Connection to the accelerator every ~600 m (4 Cryostrings)
- Limit the use for only transport and non-active utilities

Heading

- Keep sub-tunnel excavation 500~2000 m ahead
- Spontaneous Drainage of Sump Water
 - Raise tunnel elevation to/above valley bottom
 - (The accelerator partly appears near/above the surface ground.)

Change of Tunnel Configuration in TDP2

RDR: Beam Tunnel + Service Tunnel + Access/Utility Tunnels **TDP2:** Accelerator Tunnel + Access/Utility Tunnels/Shafts

Applicability of RDR Design to Other Sites

Preliminary Study By TDP2 Concepts

CFS Working Group,

Advanced Accelerator Technology Promotion Association (AAA)

Overall Civil Layout (Construction Phase)

Overall Civil Layout (Final)

Tunnel Configuration

ILC10 Beijing, 26-30 March, 2010

<u>Main Tunnel</u>

(Spec.)

φ6.58 m TBM, φ5.2 m finished I.D.
Lining concrete ~30 cm
Waterproofing (waterproof sheet)
Drainage tunnel
(Construction)
TBM assembled under the ground
~4 km /TBM,
~350 m/month (with heading)
Drainage boring
Invert Liner
Concrete lining after excavation
(<->One-path lining with Precast segment)

Sub Tunnel

 ϕ 4.5 m TBM, ϕ 4.1 m finished I.D. (Construction) TBM assembled under the groud ~4 km /TBM, ~250 m/month "Shotcrete" finish Heading for Main Tunnel ~500-2000 m ahead Geologicalsurvey Drainage of sump water (Required Structure) **Cooling Water Pipe Drain Pipe Drainage Channel Transport Area** Human Evacuation Area

<u>Passages</u>

Drainage of Sump Water

No exact sump water data along the tunnel routes.

0.018-0.84 (av.~0.2) m³/min/km is the value for existing tunnels in similar geology (Japan Tunnelling Association, 1983).

Key points: Avoid radioactivation, High maintenablity, Reliability, Low operation cost

Transport of Sump Water

~300 kW is necessary electricity for the sump water treatment.

ILC10 Beijing, 26-30 March, 2010

Detector Hall and Central Area

※1 アクセストンネルは既設道路に接続できるように計画した。
 ※2 アクセストンネルの延長は、直線部1,152m、曲線部39mおよび衝突実験ホール内120mの合計1,311mとする。
 ※3 アクセストンネルの勾配は直接区間で5.12%とし、曲線部および衝突実験ホール内で0%とした。

Cost Impacts (Very preliminary)

Civil Cost Reduction (preliminary estimates)

Asian Civil cost will still be reduced in TDP2 even if we take care more of environment, life safety, accessibility, excavation risk, sump water, etc. ...

Tunnel configulations and Cost impacts in Site A

	TDP2		TDP1		RDR	
Point ID	L (m)	L _V (m)	L (m)	L _v (m)	L (m)	L _V (m)
P11	1,000		1215		1215	
(P7)	1,500		1565		1565	
(P5)	1,500		1577		1577	
(P3)	1,000		1713		1713	
(P2)		50	1157		1157	
<p4></p4>		30	653		653	
(P6)		40	938		938	
P10		60	771		771	
P1(16f)	1,300			115		115
P1.1(16f)		95		115		115
P1.2(9f)				115		115
P12			1501		1501	
P13			1403		1403	
Beam Tunnel	30,900		30900		30900	
Service Tunnel (BDS)	5,460		5460		30900	
Access Tunnel (excpt BDS)	25,440					
	68,100	275	48,853	345	74,293	345

Asian CFS Review

To start TDP2, the Asian CFS Team would invite reviewer (M. Ross, V. Kuchler, J. Osborne, and necessary experts) at an early date (in May or June). (under planning)

Summary

<u>Summary</u>

- (1) In TDP2, the Asian CFS team will make a regional activities based on the Single-Tunnel Accelerator Configuration, focusing on the DRFS high-level RF system.
- (2) The regional design will be developed taking account of not only cost reduction but also wider site applicability, life safety, environment conservation, risk management, etc.
- (3) Preliminary study by AAA CFS Working group helped us to find a direction by which the above goals will be achieved.