Present Status of GRACE/SUSY-loop

Masato Jimbo (Speaker),

GRACE-SUSY collaboration K.lizuka, T.Ishikawa, K.Kato, T.Kon, Y.Kurihara, M.Kuroda

International Linear Collider Workshop 2010 Friendship Hotel, Beijing, China, 26-30 March 2010

Contents

1. Motivation

- 2. GRACE system
- 3. Stop decay (2-body decay)
- 4. Stop decay (3-body decay)
- 5. Sfermion-NLG
- 6. Summary

1. Motivation

The best candidate for BSM

 Search for SUSY particles @LHC&ILC

 Precision study @ILC

 The accuracy of theoretical prediction should be less than the accuracy of experimental measurement

 1-loop correction to major possible decays of sfermion and gluino with GRACE/SUSY-loop

2. GRACE system

- 1. Generates all Feynman diagrams automatically
- 2. Generates physical amplitudes automatically
- Incorporates libraries
 (Loop integral, Kinematics, etc.)
- 4. Integrates the matrix element by the adaptive Monte Carlo method (BASES)
- 5. Does Monte Carlo event generation (SPRING)
- 6. Enables various self-check for the results

(UV cancellation, IR cancellation, NLG invariance, ...)

Other automatic SUSY 1-loop systems

SloopS(Boudjema et al., 05), FeynArt/Calc(Hahn, 01, 06)

Nonlinear gauge (NLG) fixing terms
in the electroweak sector of MSSM
$$L_{gf} = -\frac{1}{\xi_{W}} |F_{W^{+}}|^{2} - \frac{1}{2\xi_{Z}} (F_{Z})^{2} - \frac{1}{2\xi_{\gamma}} (F_{\gamma})^{2} : \text{gauge fixing terms}$$
$$F_{W^{+}} = (\partial_{\mu} + ie\tilde{\alpha}A_{\mu} + igc_{W}\tilde{\beta}Z_{\mu})W^{+\mu} + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}_{h}h^{0} + \tilde{\delta}_{H}H^{0} + i\tilde{\kappa}G^{0})G^{+}$$
$$F_{Z} = \partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g_{Z}}{2}(v + \tilde{\varepsilon}_{h}h^{0} + \tilde{\varepsilon}_{H}H^{0})G^{0} \qquad F_{\gamma} = \partial_{\mu}A^{\mu}$$
Gauge invariant scheme^[1] gauge invariance test
independence of physical results on NLG parameters
 $(\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}_{h}, \tilde{\delta}_{H}, \tilde{\kappa}, \tilde{\varepsilon}_{h}, \tilde{\varepsilon}_{H})$: NLG parameters
 $(\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}_{h}, \tilde{\delta}_{H}, \tilde{\kappa}, \tilde{\varepsilon}_{h}, \tilde{\varepsilon}_{H})$: NLG parameters
[1] J.Fujimoto et al., Nucl. Phys. (Proc. Suppl.) 157 (2006) 157;
Phys.Rev.D75, 113002('07)

Renormalization Scheme

Electroweak corrections

 On-Mass-Shell scheme e.g. $\operatorname{Re}\hat{\Pi}_{W}(M_{W}^{2}) = 0$ $\hat{\Pi}_{W}(q^{2}) = \Pi_{W}(q^{2}) + \delta M_{W}^{2} - \delta Z_{W}(q^{2} - M_{W}^{2})$ \rightarrow mass shifts occur for $h^0, H^{\pm}, \widetilde{\chi}^0_{2,3,4}$ * Sfermion sector \rightarrow residue conditions: $\delta Z_{\tilde{f}\tilde{f}} = \frac{\partial}{\partial a^2} \Sigma(q^2) \Big|_{q^2 \to m_{\tilde{\tau}}^2} \equiv \Sigma'(m_{\tilde{f}}^2)$ $\widetilde{f}_{1} - \widetilde{f}_{2} \text{ decoupling conditions:}$ $\frac{1}{2} \delta Z_{\widetilde{f}_{i}\widetilde{f}_{j}} = -\frac{\sum_{\widetilde{f}_{i}\widetilde{f}_{j}} (m_{\widetilde{f}_{j}}^{2})}{m_{\widetilde{f}_{i}}^{2} - m_{\widetilde{f}_{i}}^{2}}, \quad i \neq j$ external wave function: $\delta Z_{\tilde{t}_{2}\tilde{t}_{2}}^{ext} \neq 0, \ \delta Z_{\tilde{h}_{2}\tilde{h}_{2}}^{ext} \neq 0$

QCD/SUSYQCD corrections

- * light quarks(u,d,c,s) and gluon \Rightarrow DR-bar scheme \rightarrow PDF, parton-shower, ...
- * massive quarks(b,t), squark and gluino
 ⇒On-Mass-Shell scheme
- * IR regularization... $1/\overline{\varepsilon}$ (Dimensional)

$$d = 4 - 2\varepsilon = 4 + 2\overline{\varepsilon}$$
$$C_{UV} = \frac{1}{\varepsilon}, C_{IR} = \frac{1}{\overline{\varepsilon}}$$

3. Stop decay (2-body decay)

Ν	ISSM parameters(SPS1a')
GUT scale input parameter	$M\widetilde{e}_1 = 126 \mathrm{GeV}$ $M\widetilde{e}_2 = 190 \mathrm{GeV}$ $M\widetilde{v}_e = 173 \mathrm{GeV}$
$m_0 = 100 {\rm GeV}$	$M\mu_1 = 125 \text{GeV} M\mu_2 = 190 \text{GeV} M\nu_\mu = 173 \text{GeV}$ $M\tilde{\tau}_1 = 108 \text{GeV} M\tilde{\tau}_2 = 195 \text{GeV} M\tilde{\nu}_\tau = 171 \text{GeV}$
$m_{1/2} = 250 \mathrm{GeV}$ $A_0 = -100 \mathrm{GeV}$	$M \tilde{u}_1 = 546 \text{GeV}$ $M \tilde{u}_2 = 563 \text{GeV}$ $M d_1 = 546 \text{GeV}$ $M \tilde{d}_2 = 569 \text{GeV}$ $M \tilde{c}_1 = 546 \text{GeV}$ $M \tilde{c}_2 = 563 \text{GeV}$
$\mu = 399 \mathrm{GeV}$	$M\widetilde{s}_1 = 546 \mathrm{GeV}$ $M\widetilde{s}_2 = 569 \mathrm{GeV}$ $M\widetilde{t}_1 = 369 \mathrm{GeV}$
$\tan \beta = 10$	$M\widetilde{t}_2 = 584 \text{ GeV}$ $Mb_1 = 450 \text{ GeV}$ $M\widetilde{b}_2 = 544 \text{ GeV}$ $M\widetilde{\gamma}_1^0 = 98 \text{ GeV}$ $M\widetilde{\gamma}_2^0 = 185 \text{ GeV}$ $M\widetilde{\gamma}_2^0 = 405 \text{ GeV}$
	$M\widetilde{\chi}_4^0 = 420 \text{ GeV} \ M\widetilde{\chi}_1^+ = 184 \text{ GeV} \ M\widetilde{\chi}_2^+ = 421 \text{ GeV}$
	$M_{\tilde{g}} = 610 \text{GeV}$ $M_{A^0} = 425 \text{GeV}$ $M_{A^0} = 100 \text{GeV}$ $M_{A^0} = 198 \text{GeV}$
	$M_1 = 100 \text{ GeV} M_2 = 198 \text{ GeV}$ $(M_t = 178 \text{ GeV}, M_b = 4.1 \text{ GeV})$

✓ Independence of nonlinear gauge parameters (NLG)

$$(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}_h, \widetilde{\delta}_H, \widetilde{\kappa}, \widetilde{\varepsilon}_h, \widetilde{\varepsilon}_H)$$
 : NLG parameters

Case 1 : (0,0,0,0,0,0,0) unit : [GeV] Ans = 0.15117115752797127186610833503954323

Case 2 : (1000,2000,3000,4000,5000,6000,7000) Ans = 0.15117115752797127186610833480863836

Details of $t_1 \rightarrow b \tilde{\chi}_1^+$ (3)

✓ Ultraviolet divergence is canceled? (Cuv part dependence)

unit : [GeV] Case 1 : (Cuv=0) Ans = 0.15117115752797127186619832503954323Case 2 : (Cuv=1000)

Ans = 0.15117115752797127186590130279397801

 \checkmark Infrared divergence is canceled? (λ dependence) λ : fictitious photon mass

unit : [GeV]

Case 1 : $(\lambda = 1 \times 10^{-24})$ Ans = 0.1511711575279712718661083350395432 Case 2 : $(\lambda = 1 \times 10^{-27})$

Ans = 0.1511711575279712718661083351998 020

Details of $\tilde{t_1} \rightarrow b \tilde{\chi}_1^+$ (4)				
✓ Electro	 Electroweak corrections : test of cancellation 			
			Born : 1.432	26728 [GeV]
Table1: te	Table1: test of cancellation (Electroweak) unit : [GeV]			
Cuv	0	1000	0	0
λ	10^{-24}	10^{-24}	10 ⁻²⁷	10^{-24}
kc	10^{-3}	10^{-3}	10^{-3}	10 ⁻⁵
Іоор	-0.06256	-0.06256	-0.09364	-0.06256
soft	0.21373	0.21373	0.24481	0.19301
hard	0.04849	0.04849	0.04849	0.06921
sum	0.19966	0.19966	0.19966	0.19966
correction	13.9%	13.9%	13.9%	13.9% 15

Details of $\tilde{t_1} \rightarrow b \tilde{\chi}_1^+$ (5) Feynman diagrams(QCD 1-loop)

4 diagrams

Details of	$\widetilde{t}_1 \rightarrow b \widetilde{\chi}_1^+$	(6)		
✓ Infrared divergence is canceled? (Cir part dependence)				
Table2: cancellati	on check of IR	unit : [GeV]		
Cir graph No.	0	1000		
1	-1.8937129	-299.3588218		
2	-0.1893653	-0.1893653		
3	-0.0064516	-0.0064516		
4 (counter term)	0.8352818	73.8007086		
soft	-3.7518778	220.7478043		
sum	-5.0061258	-5.0061259	17	

Details of $\widetilde{t_1} \rightarrow b \widetilde{\chi}_1^+$ (7) QCD corrections : Check of cancellation Born : 1.4326728 [GeV]				
Table3: check of cancellation (QCD) unit : [GeV]				unit : [GeV]
Cuv	0		0	0
Cir	0	0	(1)	0
kc	10^{-3}	10^{-3}	10^{-3}	10-4
Іоор	-1.254	-1.254	-1.479	-1.254
soft	-3.752	-3.752	-3.527	-4.786
hard	4.905	4.905	4.905	5.939
sum	-0.100	-0.100	-0.100	-0.099
correction	-7.1%	-7.1%	-7.1%	-7.1%

Summary of stop1 decay Table4: summary of stop1 decay				unit : [GeV]
	tree	δΓ (QCD)	δΓ /tree(QCD)	
		δΓ (ELWK)	δΓ /tree(ELWK)	total
$\widetilde{t}_1 \rightarrow b \widetilde{\chi}_1^+$	1.43267	-0.104 0.200	-7.1% 13.9%	6.8%
$\widetilde{t}_1 \rightarrow t \widetilde{\chi}_1^0$	0.22067	0.00461 0.01681	2.1% 7.6%	9.7%
BR $t \widetilde{\chi}_{1}^{0}$ 13.3%			total decay w	idth
$b\widetilde{\chi}_{1}^{+}$ 86.3 1-loop %		tree	Г(tree) : 1.0 Г(QCD) : 1.5 Г(Electroweak) : 1.5 Г(1-loop) : 1.5	65 [GeV] 55 [GeV] 87 [GeV] 77 [GeV]
86.7%				19

$$\begin{split} \textbf{MSSM parameters} \\ \textbf{M}_{\widetilde{t}_{1}} &= 278.9 \, \text{GeV} - 600 \, \text{GeV} \qquad M_{\widetilde{t}_{2}}^{2} &= 600 \, \text{GeV} \\ \textbf{M}_{\widetilde{b}_{1}} &= 330 \, \text{GeV} \qquad M_{\widetilde{V}}^{2} &= 317 \, \text{GeV} \\ \textbf{M}_{\widetilde{\lambda}_{1}}^{0} &= 194.58 \, \text{GeV} \qquad M_{\widetilde{\lambda}_{1}}^{+} &= 396.12 \, \text{GeV} \\ \textbf{M}_{\widetilde{g}}^{2} &= 1390 \, \text{GeV} \qquad \textbf{M}_{\widetilde{\chi}_{1}}^{+} &= 396.12 \, \text{GeV} \\ \textbf{M}_{\widetilde{g}}^{2} &= 1390 \, \text{GeV} \qquad \mu = -750 \, \text{GeV} \\ \textbf{M}_{\varepsilon}^{2} &= 400 \, \text{GeV} \qquad \mu = -750 \, \text{GeV} \\ \textbf{M}_{\varepsilon}^{2} &= 400 \, \text{GeV} \qquad \mu = -750 \, \text{GeV} \\ \textbf{M}_{\varepsilon}^{2} &= 178 \, \text{GeV}, \qquad M_{b}^{2} &= 4.1 \, \text{GeV}, \qquad M_{w}^{2} &= 80.22 \, \text{GeV} \end{split} \end{split}$$

Feynman diagrams $\tilde{t}_1 \rightarrow b W^+ \tilde{\chi}_1^0$ (tree)

Feynman diagrams (Electroweak 1-loop)

Feynman diagrams (QCD 1-loop)

$$\begin{aligned} & \left[\textbf{5. Sfermion-NLG} \\ & \text{NLG formalism is extend as follows:} \\ & F_{W^*} = (\partial_{\mu} + ie\tilde{\alpha}A_{\mu} + igc_{W}\tilde{\beta}Z_{\mu})W^{+\mu} + i\xi_{W}\frac{g}{2}(v + \tilde{\delta}_{h}h^{0} + \tilde{\delta}_{H}H^{0} + i\tilde{\kappa}G^{0})G^{+} \\ & + i\xi_{W}g\left[\sum_{ij}\left\{ \tilde{c}_{ij}^{du}\left(\tilde{d}_{i}^{*}\tilde{u}_{j}\right) + \tilde{c}_{ij}^{sc}\left(\tilde{s}_{i}^{*}\tilde{c}_{j}\right) + \tilde{c}_{ij}^{bt}\left(\tilde{b}_{i}^{*}\tilde{t}_{j}\right) \right\} + \sum_{i}\left\{ \tilde{c}_{i}^{e}\left(\tilde{e}_{i}^{*}\tilde{v}_{e}\right) + \tilde{c}_{i}^{\mu}\left(\tilde{\mu}_{i}^{*}\tilde{v}_{\mu}\right) + \tilde{c}_{i}^{r}\left(\tilde{\epsilon}_{i}^{*}\tilde{v}_{r}\right) \right\} \right] \\ & F_{W^{-}} = (\partial_{\mu} - ie\tilde{\alpha}A_{\mu} - igc_{W}\tilde{\beta}Z_{\mu})W^{-\mu} - i\xi_{W}\frac{g}{2}(v + \tilde{\delta}_{h}h^{0} + \tilde{\delta}_{H}H^{0} - i\tilde{\kappa}G^{0})G^{-} \\ & - i\xi_{W}g\left[\sum_{lj}\left\{ \tilde{c}_{ij}^{ud}\left(\tilde{\mu}_{i}^{*}\tilde{d}_{j}\right) + \tilde{c}_{ij}^{cs}\left(\tilde{c}_{i}^{*}\tilde{s}_{j}\right) + \tilde{c}_{ij}^{tb}\left(\tilde{t}_{i}^{*}\tilde{b}_{j}\right) \right\} + \sum_{l}\left\{ \tilde{c}_{i}^{e}\left(\tilde{v}_{e}^{*}\tilde{e}_{i}\right) + \tilde{c}_{i}^{\mu}\left(\tilde{v}_{\mu}^{*}\tilde{\mu}_{i}\right) + \tilde{c}_{i}^{r}\left(\tilde{v}_{\tau}^{*}\tilde{\tau}_{i}\right) \right\} \right] \\ & F_{Z} = \partial_{\mu}Z^{\mu} + \xi_{Z}\frac{g_{Z}}{2}(v + \tilde{\varepsilon}_{h}h^{0} + \tilde{\varepsilon}_{H}H^{0})G^{0} \\ & + \xi_{Z}g_{Z}\left[\sum_{ij}\left\{ \tilde{c}_{ij}^{uu}\left(\tilde{u}_{i}^{*}\tilde{u}_{j}\right) + \tilde{c}_{ij}^{dd}\left(\tilde{d}_{i}^{*}\tilde{d}_{j}\right) + \tilde{c}_{ij}^{cc}\left(\tilde{c}_{i}^{*}\tilde{c}_{i}\right) + \tilde{c}_{ij}^{ss}\left(\tilde{s}_{i}^{*}\tilde{s}_{j}\right) + \tilde{c}_{ij}^{tt}\left(\tilde{t}_{i}^{*}\tilde{t}_{j}\right) + \tilde{c}_{ij}^{et}\left(\tilde{t}_{i}^{*}\tilde{t}_{j}\right) \right\} \\ & + \tilde{c}^{v_{v}v_{v}}\left(\tilde{v}_{e}^{*}\tilde{v}_{e}\right) + \tilde{c}^{v_{v}v_{\mu}}\left(\tilde{v}_{\mu}^{*}\tilde{v}_{\mu}\right) + \tilde{c}^{v_{v}v_{\mu}}\left(\tilde{v}_{\pi}^{*}\tilde{\tau}_{j}\right) \right\} \\ \end{array}$$

Vertices are tested in tree-level order

tested processes	NLG parameters
$\widetilde{\mathcal{V}}_{\tau} + \widetilde{\mathcal{V}}_{\tau}^{*} \rightarrow \widetilde{\mathcal{V}}_{\tau} + \widetilde{\mathcal{V}}_{\tau}^{*}$	$\widetilde{c}^{\nu_{\tau}\nu_{\tau}} = \text{param}$
$\widetilde{v}_{\tau} + \widetilde{v}_{\tau}^{*} \rightarrow \widetilde{\tau}_{i} + \widetilde{\tau}_{j}^{*}(i, j = 1, 2)$	$\widetilde{c}^{\nu_{\tau}\nu_{\tau}} = \text{param}, \ \widetilde{c}_{ij}^{\tau\tau} = 1$
$\widetilde{\nu}_{\tau} + \widetilde{\nu}_{\tau}^{*} \rightarrow \widetilde{\tau}_{i} + \widetilde{\tau}_{j}^{*} (i, j = 1, 2)$	$\widetilde{c}_i^{\ \tau} = \operatorname{param}\left(, \widetilde{c}_j^{\ \tau} = \operatorname{param}\right)$
$\widetilde{\tau}_{i} + \widetilde{\tau}_{j}^{*} \rightarrow \widetilde{\tau}_{k} + \widetilde{\tau}_{l}^{*} (i, j, k, l = 1, 2)$	$\widetilde{c}_{ij}^{\tau\tau} = \operatorname{param}\left(,\ \widetilde{c}_{kl}^{\tau\tau} = 1\right)$
$\widetilde{\nu}_{\tau} + \widetilde{\nu}_{\tau}^{*} \rightarrow \widetilde{\nu}_{\mu} + \widetilde{\nu}_{\mu}^{*}$	$\widetilde{c}^{\nu_{\tau}\nu_{\tau}} = \text{param}, \widetilde{c}^{\nu_{\mu}\nu_{\mu}} = 1$
$\widetilde{v}_{\tau} + \widetilde{v}_{\tau}^{*} \rightarrow \widetilde{\mu}_{i} + \widetilde{\mu}_{j}^{*}(i, j = 1, 2)$	$\widetilde{c}^{\nu_{\tau}\nu_{\tau}} = 1, \ \widetilde{c}_{ij}^{\mu\mu} = \text{param}$
$\widetilde{v}_{\tau}^{*} + \widetilde{\tau}_{i} \rightarrow \widetilde{v}_{\mu}^{*} + \widetilde{\mu}_{j} (i, j = 1, 2)$	$\widetilde{c}_{j}^{\ \mu} = \text{param}, \widetilde{c}_{i}^{\ \tau} = 1$
$\widetilde{\tau}_{i}^{*} + \widetilde{\nu}_{\tau} \rightarrow \widetilde{\mu}_{j}^{*} + \widetilde{\nu}_{\mu} (i, j = 1, 2)$	$\widetilde{c}_{j}^{\ \mu} = \text{param}, \widetilde{c}_{i}^{\ \tau} = 1$
$\widetilde{\tau}_{i} + \widetilde{\tau}_{j}^{*} \rightarrow \widetilde{\mu}_{k} + \widetilde{\mu}_{l}^{*}(i, j, k, l = 1, 2)$	$\widetilde{c}_{ij}^{\tau\tau} = \text{param}, \ \widetilde{c}_{kl}^{\mu\mu} = 1$
param=-2000, -1000, 0, 1000, 2000	

Parameters:

 $M\tilde{\tau}_1 = 495.8363 \text{GeV}$ $M\tilde{\tau}_2 = 508.2332 \text{GeV}$ $(M_e = 300 \text{ GeV})$

Numerical results $(\sqrt{s} = 1500 \,\text{GeV})$

0: ANS = 8.9792964724402614470699931753014867 10000: ANS = 8.9792964724402614470699931753013881

 $\widetilde{C}_{12}^{\tau\tau}$ =0:

M(1, 1)=

0.10269237512119918812995945384209772E-02 M(1, 4)=

-0.38529019804590944104014323681077317E-03 M(1, 5) =

-0.29070005693539901125229604898770801E-05 M(4, 5)=

0.10425754169753368492956162927317175 M(5, 5)=

0.78661937057133369193446324698668517E-03

$$\widetilde{C}_{12}^{\tau\tau}$$
=10000:

M(1, 1)=

```
0.10269449195937336652852973634412653E-02
M(1, 4)=
-0.66404570223518680945209228534251260E-03
M(1, 5) =
```

-0.50235966130396134337994982683375445E-05 M(4, 5)=

0.10453629720172296229797357832170511 M(5, 5)=

0.79083139427696315459131349752335842E-03

6. Summary

- QCD and Electroweak 1-loop corrections for 2-body and 3-body decays of lighter stop
 calculated by GRACE/SUSY-loop
- ✓ δΓ(Electroweak) > δΓ(QCD) : possible
 originated from large Yukawa correction of top
- ✓ NLG formalism is extend
 - including sfermion bilinear forms
 - tests are completed in tree-level order